
UNIT: 1  

Introduction to Digital Image Processing: 

An image may be defined as a two-dimensional function, f(x, y), where x and y are spatial 

(plane) coordinates, and the amplitude of f at any pair of coordinates (x, y) is called the intensity 

or gray level of the image at that point. When x, y, and the amplitude values of f are all finite, 

discrete quantities, we call the image a digital image. The field of digital image processing 

refers to processing digital images by means of a digital computer. 

Digital image is composed of a finite number of elements, each of which has a particular 

location and value. These elements are referred to as picture elements, image elements, pels, 

and pixels. 

 

Low-level processes involve primitive operations such as image preprocessing to 

reduce noise, contrast enhancement, and image sharpening. A low-level process is 

characterized by the fact that both its inputs and outputs are images.  

Mid-level processing on images involves tasks such as segmentation (partitioning an image 

into regions or objects), description of those objects to reduce them to a form suitable for 

computer processing, and classification (recognition) of individual objects. A mid-level 

process is characterized by the fact that its inputs generally are images, but its outputs are 

attributes extracted from those images (e.g., edges, contours, and the identity of individual 

objects). 

 Higher-level processing involves “making sense” of an ensemble of recognized 

objects, as in image analysis, and, at the far end of the continuum, performing the cognitive 

functions normally associated with vision. 

 

1.2 The Origins of Digital Image Processing 

One of the first applications of digital images was in the newspaper industry, when 

pictures were first sent by submarine cable between London and New York. Introduction of 

the Bartlane cable picture transmission system in the early 1920s reduced the time required to 

transport a picture across the Atlantic from more than a week to less than three hours. 

Specialized printing equipment coded pictures for cable transmission and then reconstructed 

them at the receiving end on a telegraph printer fitted with typefaces simulating a halftone 

pattern. 

By the end of 1921 in favor of a technique based on photographic reproduction made 

from tapes perforated at the telegraph receiving terminal. The improvements are both in tonal 

quality and in resolution. 

The early Bartlane systems were capable of coding images in five distinct levels of 

gray. This capability was increased to 15 levels in 1929. During this period, introduction of a 

system for developing a film plate via light beams that were modulated by the coded picture 

tape improved the reproduction process considerably.  
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The history of digital image processing is intimately tied to the development of the 

digital computer. In fact, digital images require so much storage and computational power that 

progress in the field of digital image processing has been dependent on the development of 

digital computers and of supporting technologies that include data storage, display, and 

transmission. 

Some Applications: 

Space applications, medical imaging, remote Earth resources observations, and 

astronomy. 

Computerized axial tomography (CAT), also called computerized tomography (CT) for 

short, is one of the most important events in the application of image processing in medical 

diagnosis. Computerized axial tomography is a process in which a ring of detectors encircles 

an object (or patient) and an X-ray source, concentric with the detector ring, rotates about the 

object. The X-rays pass through the object and are collected at the opposite end by the 

corresponding detectors in the ring. As the source rotates, this procedure is repeated. 

Tomography consists of algorithms that use the sensed data to construct an image that 

represents a “slice” through the object. 

Motion of the object in a direction perpendicular to the ring of detectors produces a set 

of such slices, which constitute a three-dimensional (3-D) rendition of the inside of the object. 

Tomography was invented independently by Sir Godfrey N. Hounsfield and Professor Allan 

M. Cormack, who shared the 1979 Nobel Prize in Medicine for their invention. It is interesting 

to note that X-rays were discovered in 1895 by Wilhelm Conrad Roentgen, for which he 

received the 1901 Nobel Prize for Physics. 

In addition to applications in medicine and the space program, digital image processing 

techniques now are used in a broad range of applications. Computer procedures are used to 

enhance the contrast or code the intensity levels into color for easier interpretation of X-rays 

and other images used in industry, medicine, and the biological sciences. Geographers use the 

same or similar techniques to study pollution patterns from aerial and satellite imagery. Image 

enhancement and restoration procedures are used to process degraded images of unrecoverable 

objects or experimental results too expensive to duplicate. In archeology, image processing 

methods have successfully restored blurred pictures that were the only available records of rare 

artifacts lost or damaged after being photographed. In physics and related fields, computer 

techniques routinely enhance images of experiments in areas such as high-energy plasmas and 

electron microscopy. Similarly successful applications of image processing concepts can be 

found in astronomy, biology, nuclear medicine, law enforcement, defense, and industrial 

applications. 

 

Fundamental Steps in Digital Image Processing 

Image acquisition is the first process, being given an image that is already in digital 

form. Generally, the image acquisition stage involves preprocessing, such as scaling. 

 

Image enhancement is among the simplest and most appealing areas of digital image 

processing. Basically, the idea behind enhancement techniques is to bring out detail that is 

obscured, or simply to highlight certain features of interest in an image. A familiar example of 
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enhancement is when we increase the contrast of an image because “it looks better.” It is 

important to keep in mind that enhancement is a very subjective area of image processing 

 

Image restoration is an area that also deals with improving the appearance of an image. 

However, unlike enhancement, which is subjective, image restoration is objective, in the sense 

that restoration techniques tend to be based on mathematical or probabilistic models of image 

degradation. Enhancement, on the other hand, is based on human subjective preferences 

regarding what constitutes a “good” enhancement result. 

 
Color image processing is an area that has been gaining in importance because of the 

significant increase in the use of digital images over the Internet. 

 

Wavelets are the foundation for representing images in various degrees of resolution. 

In particular, used for image data compression and for pyramidal representation, in which 

images are subdivided successively into smaller regions. 

 

Compression, as the name implies, deals with techniques for reducing the storage 

required to save an image, or the bandwidth required to transmit it. Although storage 

technology has improved significantly over the past decade, the same cannot be said for 

transmission capacity. This is true particularly in uses of the Internet, which are characterized 

by significant pictorial content. Image compression is familiar (perhaps inadvertently) to most 

users of computers in the form of image file extensions, such as the jpg file extension used in 

the JPEG (Joint Photographic Experts Group) image compression standard. 

 

ECE/LIET 402 DIP NOTES Sudheer Asst Prof ECE Dept



Morphological processing deals with tools for extracting image components that are 

useful in the representation and description of shape. The material in this chapter begins a 

transition from processes that output images to processes that output image attributes 

 

Segmentation procedures partition an image into its constituent parts or objects. In 

general, autonomous segmentation is one of the most difficult tasks in digital image processing. 

A rugged segmentation procedure brings the process a long way toward successful solution of 

imaging problems that require objects to be identified individually. On the other hand, weak or 

erratic segmentation algorithms almost always guarantee eventual failure. In general, the more 

accurate the segmentation, the more likely recognition is to succeed. 

 

Representation and description almost always follow the output of a segmentation 

stage, which usually is raw pixel data, constituting either the boundary of a region (i.e., the set 

of pixels separating one image region from another) or all the points in the region itself. In 

either case, converting the data to a form suitable for computer processing is necessary. The 

first decision that must be made is whether the data should be represented as a boundary or as 

a complete region. Boundary representation is appropriate when the focus is on external shape 

characteristics, such as corners and inflections. Regional representation is appropriate when the 

focus is on internal properties, such as texture or skeletal shape. In some applications, these 

representations complement each other. Choosing a representation is only part of the solution 

for transforming raw data into a form suitable for subsequent computer processing. A method 

must also be specified for describing the data so that features of interest are highlighted. 

Description, also called feature selection, deals with extracting attributes that result in some 

quantitative information of interest or are basic for differentiating one class of objects from 

another. 

 

Recognition is the process that assigns a label (e.g., “vehicle”) to an object based on its 

descriptors.  

 

Components of an Image Processing System 

Image sensing: With reference to sensing, two elements are required to acquire digital 

images. The first is a physical device that is sensitive to the energy radiated by the object we 

wish to image. The second, called a digitizer, is a device for converting the output of the 

physical sensing device into digital form. For instance, in a digital video camera, the sensors 

produce an electrical output proportional to light intensity. The digitizer converts these outputs 

to digital data. 

Specialized image processing hardware usually consists of the digitizer, plus hardware 

that performs other primitive operations, such as an arithmetic logic unit (ALU), which 

performs arithmetic and logical operations in parallel on entire images. One example of how 

an ALU is used is in averaging images as quickly as they are digitized, for the purpose of noise 

reduction. This type of hardware sometimes is called a front-end subsystem, and its most 

distinguishing characteristic is speed. In other words, this unit performs functions that require 

fast data throughputs (e.g., digitizing and averaging video images at 30 frames_s) that the 

typical main computer cannot handle. 
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The computer in an image processing system is a general-purpose computer and can 

range from a PC to a supercomputer. In dedicated applications, sometimes specially designed 

computers are used to achieve a required level of performance, but our interest here is on 

general-purpose image processing systems. In these systems, almost any well-equipped PC-

type machine is suitable for offline image processing tasks. 

 

 
 

 

Software for image processing consists of specialized modules that perform specific 

tasks. A well-designed package also includes the capability for the user to write code that, as a 

minimum, utilizes the specialized modules. More sophisticated software packages allow the 

integration of those modules and general-purpose software commands from at least one 

computer language. 

 

Mass storage capability is a must in image processing applications. An image of size 

1024*1024 pixels, in which the intensity of each pixel is an 8-bit quantity, requires one 

ECE/LIET 402 DIP NOTES Sudheer Asst Prof ECE Dept



megabyte of storage space if the image is not compressed. When dealing with thousands, or 

even millions, of images, providing adequate storage in an image processing system can be a 

challenge. Digital storage forimage processing applications falls into three principal categories: 

(1) shortterm storage for use during processing, (2) on-line storage for relatively fast recall, 

and (3) archival storage, characterized by infrequent access. Storage is measured in bytes (eight 

bits), Kbytes (one thousand bytes), Mbytes (one million bytes), Gbytes (meaning giga, or one 

billion, bytes), and Tbytes (meaning tera, or one trillion, bytes). 

 

One method of providing short-term storage is computer memory. Another is by 

specialized boards, called frame buffers, that store one or more images and can be accessed 

rapidly, usually at video rates (e.g., at 30 complete images per second).The latter method allows 

virtually instantaneous image zoom, as well as scroll (vertical shifts) and pan (horizontal 

shifts). Online storage generally takes the form of magnetic disks or optical-media storage. The 

key factor characterizing on-line storage is frequent access to the stored data. Finally, archival 

storage is characterized by massive storage requirements 

but infrequent need for access. Magnetic tapes and optical disks housed in “jukeboxes” are the 

usual media for archival applications. 

 

Image displays in use today are mainly color (preferably flat screen) TV monitors. 

Monitors are driven by the outputs of image and graphics display cards that are an integral part 

of the computer system. Seldom are there requirements for image display applications that 

cannot be met by display cards available commercially as part of the computer system. In some 

cases, it is necessary to have stereo displays, and these are implemented in the form of headgear 

containing two small displays embedded in goggles worn by the user. 

 

Hardcopy devices for recording images include laser printers, film cameras, heat-

sensitive devices, inkjet units, and digital units, such as optical and CD-ROM disks. Film 

provides the highest possible resolution, but paper is the obvious medium of choice for written 

material.For presentations, images are displayed on film transparencies or in a digital medium 

if image projection equipment is used.The latter approach is gaining acceptance as the standard 

for image presentations. 

 

Networking is almost a default function in any computer system in use today. Because 

of the large amount of data inherent in image processing applications, the key consideration in 

image transmission is bandwidth. In dedicated networks, this typically is not a problem, but 

communications with remote sites via the Internet are not always as efficient. Fortunately, this 

situation is improving quickly as a result of optical fiber and other broadband technologies. 

 

 

 

 

 

 

ECE/LIET 402 DIP NOTES Sudheer Asst Prof ECE Dept



Image Sensing and Acquisition 

The types of images in which we are interested are generated by the combination of an 

“illumination” source and the reflection or absorption of energy from that source by the 

elements of the “scene” being imaged. We enclose illumination and scene in quotes to 

emphasize the fact that they are considerably more general than the familiar situation in which 

a visible light source illuminates a common everyday 3-D (three-dimensional) scene. For 

example, the illumination may originate from a source of electromagnetic energy such as radar, 

infrared, or X-ray energy. But, as noted earlier, it could originate from less traditional sources, 

such as ultrasound or even a computer-generated illumination pattern. 

Similarly, the scene elements could be familiar objects, but they can just as easily be 

molecules, buried rock formations, or a human brain. We could even image a source, such as 

acquiring images of the sun. Depending on the nature of the source, illumination energy is 

reflected from, or transmitted through, objects. An example in the first category is light 

reflected from a planar surface. An example in the second category is when X-rays pass through 

a patient’s body for the purpose of generating a diagnostic X-ray film. In some applications, 

the reflected or transmitted energy is focused onto a photo converter (e.g., a phosphor screen), 

which converts the energy into visible light. Electron microscopy and some applications of 

gamma imaging use this approach. 

Figure shows the three principal sensor arrangements used to transform illumination 

energy into digital images. The idea is simple: Incoming energy is transformed into a voltage 

by the combination of input electrical power and sensor material that is responsive to the 

particular type of energy being detected. The output voltage waveform is the response of the 

sensor(s), and a digital quantity is obtained from each sensor by digitizing its response. 

 

Image Acquisition Using a Single Sensor 

The most familiar sensor of this type is the photodiode, which is constructed of silicon 

materials and whose output voltage waveform is proportional to light.The use of a filter in front 
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of a sensor improves selectivity. For example, a green (pass) filter in front of a light sensor 

favors light in the green band of the color spectrum. As a consequence, the sensor output will 

be stronger for green light than for other components in the visible spectrum. 

In order to generate a 2-D image using a single sensor, there has to be relative 

displacements in both the x- and y-directions between the sensor and the area to be imaged. 

Figure shows an arrangement used in high-precision scanning, where a film negative is 

mounted onto a drum whose mechanical rotation provides displacement in one dimension. The 

single sensor is mounted on a lead screw that provides motion in the perpendicular direction. 

Since mechanical motion can be controlled with high precision, this method is an inexpensive 

(but slow) way to obtain high-resolution images. Other similar mechanical arrangements use a 

flat bed, with the sensor moving in two linear directions. These types of mechanical digitizers 

sometimes are referred to as microdensitometers. 

Another example of imaging with a single sensor places a laser source coincident with 

the sensor. Moving mirrors are used to control the outgoing beam in a scanning pattern and to 

direct the reflected laser signal onto the sensor. This arrangement also can be used to acquire 

images using strip and array sensors. 

 
Image Acquisition Using Sensor Strips 

A geometry that is used much more frequently than single sensors consists of an in-line 

arrangement of sensors in the form of a sensor strip. The strip provides imaging elements in 

one direction. Motion perpendicular to the strip provides imaging in the other direction, as 

shown in Fig.This is the type of arrangement used in most flat bed scanners. Sensing devices 

with 4000 or more in-line sensors are possible. In-line sensors are used routinely in airborne 

imaging applications, in which the imaging system is mounted on an aircraft that flies at a 

constant altitude and speed over the geographical area to be imaged. One-dimensional imaging 

sensor strips that respond to various bands of the electromagnetic spectrum are mounted 

perpendicular to the direction of flight. The imaging strip gives one line of an image at a time, 

and the motion of the strip completes the other dimension of a two-dimensional image. Lenses 

or other focusing schemes are used to project the area to be scanned onto the sensors. 
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Sensor strips mounted in a ring configuration are used in medical and industrial imaging 

to obtain cross-sectional (“slice”) images of 3-D objects, as Fig shows A rotating X-ray source 

provides illumination and the portion of the sensors opposite the source collect the X-ray 

energy that pass through the object (the sensors obviously have to be sensitive to X-ray 

energy).This is the basis for medical and industrial computerized axial tomography (CAT) 

imaging. It is important to note that the output of the sensors must be processed by 

reconstruction algorithms whose objective is to transform the sensed data into meaningful 

cross-sectional images. 

 
In other words, images are not obtained directly from the sensors by motion alone; they require 

extensive processing. A 3-D digital volume consisting of stacked images is generated as the 

object is moved in a direction perpendicular to the sensor ring. Other modalities of imaging 

based on the CAT principle include magnetic resonance imaging (MRI) and positron emission 

tomography (PET).  

Image Acquisition Using Sensor Arrays 

Individual sensors arranged in the form of a 2-D array. Numerous electromagnetic and 

some ultrasonic sensing devices frequently are arranged in an array format. This is also the 

predominant arrangement found in digital cameras. A typical sensor for these cameras is a CCD 

array, which can be manufactured with a broad range of sensing properties and can be packaged 

in rugged arrays of elements or more. CCD sensors are used widely in digital cameras and other 

light sensing instruments. The response of each sensor is proportional to the integral of the light 

energy projected onto the surface of the sensor, a property that is used in astronomical and 

other applications requiring low noise images. Noise reduction is achieved by letting the sensor 

integrate the input light signal over minutes or even hours. Since the sensor array shown in Fig 
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is two dimensional, its key advantage is that a complete image can be obtained by focusing the 

energy pattern onto the surface of the array. 

The principal manner in which array sensors are used is shown in Fig. This figure shows 

the energy from an illumination source being reflected from a scene element, but, as mentioned 

at the beginning of this section, the energy also could be transmitted through the scene 

elements. The first function performed by the imaging system shown in Fig is to collect the 

incoming energy and focus it onto an image plane. If the illumination is light, the front end of 

the imaging system is a lens, which projects the viewed scene onto the lens focal plane, as Fig 

shows. The sensor array, which is coincident with the focal plane, produces outputs 

proportional to the integral of the light received at each sensor. Digital and analog circuitry 

sweep these outputs and convert them to a video signal, which is then digitized by another 

section of the imaging system. The output is a digital image, as shown diagrammatically in Fig. 

 
A Simple Image Formation Model 

Denote images by two-dimensional functions of the form f(x, y). The value or amplitude of f 

at spatial coordinates (x, y) is a positive scalar quantity whose physical meaning is determined 

by the source of the image. When an image is generated from a physical process, its values are 

proportional to energy radiated by a physical source (e.g., electromagnetic waves).As a 

consequence, f(x, y) must be nonzero and finite; that is, 

0<f(x, y)<q. 

The function f(x, y) may be characterized by two components: (1) the amount of source 

illumination incident on the scene being viewed, and (2) the amount of illumination reflected 

by the objects in the scene. Appropriately, these are called the illumination and reflectance 

components and are denoted by i(x, y) and r(x, y), respectively.The two functions combine as 

a product to form f(x, y): 

f(x, y)=i(x, y)r(x, y) 

where 0<i(x, y)<q (2.3-3) and 0<r(x, y)<1. 

reflectance is bounded by 0 (total absorption) and 1 (total reflectance).The nature of i(x, y) is 

determined by the illumination source, and r(x, y) is determined by the characteristics of the 

imaged objects. 
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It is noted that these expressions also are applicable to images formed via transmission 

of the illumination through a medium, such as a chest X-ray. In this case, we would deal with 

a transmissivity instead of a reflectivity function, but the limits would be the same as in Eq. 

(2.3-4), and the image function formed would be modeled as the product in Eq. (2.3-2). 

The values given in Eqs. (2.3-3) and (2.3-4) are theoretical bounds. The following average 

numerical figures illustrate some typical ranges of i(x, y) for visible light. On a clear day, the 

sun may produce in excess of 90,000 lm_m2 of illumination on the surface of the Earth. This 

figure decreases to less than 10,000 lm_m2 on a cloudy day. On a clear evening, a full moon 

yields about 0.1 lm_m2 of illumination. The typical illumination level in a commercial office 

is about 1000 lm_m2. Similarly, the following are some typical values of r(x, y): 0.01 for black 

velvet, 0.65 for stainless steel, 0.80 for flat-white wall paint, 0.90 for silver-plated metal, and 

0.93 for snow. 

The intensity of a monochrome image at any coordinates (x0, y0) the gray level (/) of 

the image at that point.That is, / = f(x0 , y0) 

From Eqs. (2.3-2) through (2.3-4), it is evident that / lies in the range Lmin <=/<= Lmax 

In theory, the only requirement on Lmin is that it be positive, and on Lmax that it be 

finite. In practice,Lmin=iminrmin and Lmax=imaxrmax.Using the preceding average office 

illumination and range of reflectance values as guidelines, we may expect Lmin≠10 and 

Lmax≠1000 to be typical limits for indoor values in the absence of additional illumination. 

The interval (Lmin , Lmax ) is called the gray scale. Common practice is to shift this interval 

numerically to the interval [0, L-1], where /=0 is considered black and /=L-1 is considered 

white on the gray scale. All intermediate values are shades of gray varying from black to white. 

 

Image Sampling and Quantization 

The output of most sensors is a continuous voltage waveform whose amplitude and 

spatial behavior are related to the physical phenomenon being sensed. To create a digital image, 

we need to convert the continuous sensed data into digital form. This involves two processes: 

sampling and quantization. 

Basic Concepts in Sampling and Quantization 

The basic idea behind sampling and quantization is illustrated in Fig. Figure (a) shows 

a continuous image, f(x, y), that we want to convert to digital form. An image may be 

continuous with respect to the x- and y-coordinates, and also in amplitude. To convert it to 

digital form, we have to sample the function in both coordinates and in amplitude. Digitizing 

the coordinate values is called sampling. Digitizing the amplitude values is called quantization. 

The one-dimensional function shown in Fig.(b) is a plot of amplitude (gray level) values 

of the continuous image along the line segment AB in Fig. (a).The random variations are due 

to image noise. To sample this function, we take equally spaced samples along line AB, as 

shown in Fig.(c).The location of each sample is given by a vertical tick mark in the bottom part 

of the figure. The samples are shown as small white squares superimposed on the function. The 

set of these discrete locations gives the sampled function. However, the values of the samples 

still span (vertically) a continuous range of gray-level values. 

In order to form a digital function, the gray-level values also must be converted 

(quantized) into discrete quantities. The right side of Fig.(c) shows the gray-level scale divided 

into eight discrete levels, ranging from black to white. The vertical tick marks indicate the 

ECE/LIET 402 DIP NOTES Sudheer Asst Prof ECE Dept



specific value assigned to each of the eight gray levels. The continuous gray levels are 

quantized simply by assigning one of the eight discrete gray levels to each sample. The 

assignment is made depending on the vertical proximity of a sample to a vertical tick mark. 

The digital samples resulting from both sampling and quantization are shown in Fig.(d). 

Starting at the top of the image and carrying out this procedure line by line produces a two-

dimensional digital image. 

Sampling in the manner just described assumes that we have a continuous image in 

both coordinate directions as well as in amplitude. In practice, the method of sampling is 

determined by the sensor arrangement used to generate the image. When an image is generated 

by a single sensing element combined with mechanical motion, the output of the sensor is 

quantized in the manner described above. However, sampling is accomplished by selecting the 

number of individual mechanical increments at which we activate the sensor to collect data. 

Mechanical motion can be made very exact so, in principle, there is almost no limit as to how 

fine we can sample an image. However, practical limits are established by imperfections in the 

optics used to focus on the sensor an illumination spot that is inconsistent with the fine 

resolution achievable with mechanical displacements. 

When a sensing strip is used for image acquisition, the number of sensors in the strip 

establishes the sampling limitations in one image direction. Mechanical motion in the other 

direction can be controlled more accurately, but it makes little sense to try to achieve sampling 

density in one direction that exceeds the sampling limits established by the number of sensors 

in the other. Quantization of the sensor outputs completes the process of generating a digital 

image. 

 
 

Representing Digital Images 

The result of sampling and quantization is a matrix of real numbers. We will use two 

principal ways in this book to represent digital images. Assume that an image f(x, y) is sampled 

so that the resulting digital image hasMrows andNcolumns. 

The values of the coordinates (x, y) now become discrete quantities. For notational clarity and 

convenience,we shall use integer values for these discrete coordinates. Thus, the values of the 

coordinates at the origin are (x, y)=(0, 0). 
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The next coordinate values along the first row of the image are represented as (x, y)=(0, 

1). It is important to keep in mind that the notation (0, 1) is used to signify the second sample 

along the first row. It does not mean that these are the actual values of physical coordinates 

when the image was sampled.  

 
The notation introduced in the preceding paragraph allows us to write the complete 

M*N digital image in the following compact matrix form: 

 

 
The right side of this equation is by definition a digital image. Each element of this 

matrix array is called an image element, picture element, pixel, or pel. The terms image and 

pixel will be used throughout the rest of our discussions to denote a digital image and its 

elements. 

In some discussions, it is advantageous to use a more traditional matrix notation to 

denote a digital image and its elements: 
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Clearly, aij=f(x=i, y=j)=f(i, j) 

Expressing sampling and quantization in more formal mathematical terms can be useful 

at times. Let Z and R denote the set of real integers and the set of real numbers, respectively. 

The sampling process may be viewed as partitioning the xy plane into a grid, with the 

coordinates of the center of each grid being a pair of elements from the Cartesian product Z2, 

which is the set of all ordered pairs of elements Azi, zj B, with zi and zj being integers from Z. 

Hence, f(x, y) is a digital image if (x, y) are integers from Z2 and f is a function that assigns a 

gray-level value (that is, a real number from the set of real numbers, R) to each distinct pair of 

coordinates (x, y). This functional assignment obviously is the quantization process described 

earlier. If the gray levels also are integers (as usually is the case in this and subsequent 

chapters), Z replaces R, and a digital image then becomes a 2-D function whose coordinates 

and amplitude values are integers. 

This digitization process requires decisions about values for M, N, and for the number, 

L, of discrete gray levels allowed for each pixel. There are no requirements on M and N, other 

than that they have to be positive integers. However, due to processing, storage, and sampling 

hardware considerations, the number of gray levels typically is an integer power of 2: L = 2k. 

We assume that the discrete levels are equally spaced and that they are integers in the 

interval [0, L-1]. Sometimes the range of values spanned by the gray scale is called the dynamic 

range of an image, and we refer to images whose gray levels span a significant portion of the 

gray scale as having a high dynamic range. When an appreciable number of pixels exhibit this 

property, the image will have high contrast. Conversely, an image with low dynamic range 

tends to have a dull, washed out gray look. 

 The number, b, of bits required to store a digitized image is b=M*N*k. 

When M=N, this equation becomes b = N2k. 

 

Some Basic Relationships Between Pixels 

An image is denoted by f(x, y).When referring in this section to a particular pixel, we 

use lowercase letters, such as p and q. 

Neighbors of a Pixel: 

 

A pixel p at coordinates (x, y) has four horizontal and vertical neighbors whose 

coordinates are given by (x+1, y), (x-1, y), (x, y+1), (x, y-1). This set of pixels, called the 4-

neighbors of p, is denoted by N4 (p). Each pixel is a unit distance from (x, y), and some of 

the neighbors of p lie outside the digital image if (x, y) is on the border of the image. 

 

The four diagonal neighbors of p have coordinates (x+1, y+1), (x+1, y-1), (x-1, y+1), 

(x-1, y-1) and are denoted by ND (p). These points, together with the 4-neighbors, are called 

the 8- neighbors of p, denoted by N8 (p). As before, some of the points in ND (p) and N8 (p) 

fall outside the image if (x, y) is on the border of the image. 

Connectivity: 
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Connectivity between pixels is a fundamental concept that simplifies the definition of 

numerous digital image concepts, such as regions and boundaries. To establish if two pixels 

are connected,   it must be determined if they are neighbors and if their gray levels satisfy a 

specified criterion of similarity (say, if their gray levels are equal). For instance, in a binary 

image with values 0 and 1, two pixels may be 4-neighbors, but they are said to be connected 

only if they have the same   value. 

Let V be the set of gray-level values used to define adjacency. In a binary image, V={1} 

if we    are referring to adjacency of pixels with value 1. In a grayscale image, the idea is the 

same, but   set V typically contains more elements. For example, in the adjacency of pixels 

with a range of possible gray-level values 0 to 255, set V could be any subset of these 256 

values. We consider three types of adjacency: 

(a) 4-adjacency. Two pixels p and q with values from V are 4-adjacent if q is in the set  N4 

(p). 

 

(b) 8-adjacency. Two pixels p and q with values from V are 8-adjacent if q is in the set  N8 

(p). 

 

(c) m-adjacency (mixed adjacency).Two pixels p and q with values from V are m-adjacent  if 

 

(i) q is in N4 (p), or 

 

(ii) q is in ND (p) and the set  has no pixels whose values are from V. 

 

Mixed adjacency is a modification of 8-adjacency. It is introduced to eliminate the 

ambiguities that often arise when 8-adjacency is used. For example, consider the pixel 

arrangement shown in Fig. (a) for V= {1}.The three pixels at the top of Fig. (b) show multiple 

(ambiguous) 8- adjacency, as indicated by the dashed lines. This ambiguity is removed by 

using m-adjacency, as shown in Fig.  (c).Two image subsets S1 and S2 are adjacent if some 

pixel in S1 is adjacent to some pixel in S2. It is understood here and in the following 

definitions that adjacent means 4-,   8-, or m-adjacent. A (digital) path (or curve) from pixel 

p with coordinates (x, y) to pixel q with coordinates (s, t) is a sequence of distinct pixels with 

coordinates 

 

Where     and pixels   are 

adjacent for  . In this case, n is the length of the path. If (xo, yo) = (xn, yn), the 

path is a closed path. We can define 4-, 8-, or m-paths depending on the type of adjacency 

specified.  For example, the paths shown in Fig. (b) between the northeast and southeast 

points are 8-paths,   and the path in Fig. (c) is an m-path. Note the absence of ambiguity in 

the m-path. Let S represent a subset of pixels in an image. Two pixels p and q are said to be 
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connected in S if   there exists a path between them consisting entirely of pixels in S. For any 

pixel p in S, the set of    pixels that are connected to it in S is called a connected component 

of S. If it only has one connected component, then set S is called a connected set. 

Let R be a subset of pixels in an image. We call R a region of the image if R is a 

connected set. The boundary (also called border or contour) of a region R is the set of pixels 

in the region that have one or more neighbors that are not in R. If R happens to be an entire 

image (which we    recall is a rectangular set of pixels), then its boundary is defined as the set 

of pixels in the first    and last rows and columns of the image. This extra definition is required 

because an image has    no neighbors beyond its border. Normally, when we refer to a region, 

we are referring to a  subset 

 

 

 

 

Fig. (a) Arrangement of pixels; (b) pixels that are 8-adjacent (shown dashed) to the 

center pixel; (c) m-adjacency 

 

 

Of an image, and any pixels in the boundary of the region that happen to coincide with the 

border of the image are included implicitly as part of the region  boundary. 

 

Distance Measures: 

 

For pixels p, q, and z, with coordinates (x, y), (s, t), and (v, w), respectively, D is a 

distance function or metric if 

 

 

The Euclidean distance between p and q is defined as 
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For this distance measure, the pixels having a distance less than or equal to some value   

r from(x, 

y) are the points contained in a disk of radius r centered at (x, y). 

 

The D4 distance (also called city-block distance) between p and q is defined  as 

 

 

In this case, the pixels having a D4 distance from (x, y) less than or equal to some 

value r form a diamond centered at (x, y). For example, the pixels with D4 distance ≤ 2 from 

(x, y) (the center point) form the following contours of constant distance: 

 

 

 

 

The pixels with D4 =1 are the 4-neighbors of (x, y). 

 

 

The D8 distance (also called chessboard distance) between p and q is defined  as 

In this case, the pixels with D8 distance from(x, y) less than or equal to some value  r  

form a square centered at (x, y). For example, the pixels with D8 distance ≤ 2 from(x, y) (the 

center   point) form the following contours of constant distance: 

 

The pixels with D8=1 are the 8-neighbors of (x, y). Note that the D4 and D8 distances 

between p and q are independent of any paths that might exist between the points because these 

distances involve only the coordinates of the points. If we elect to consider m-adjacency, 
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however, the Dm distance between two points is defined as the shortest m-path between the 

points. In this case, the distance between two pixels will depend on the values of the pixels 

along the path, as well as the values of their neighbors. For instance, consider the following 

arrangement of pixels and assume that p, p2 , and p4 have value 1 and that p1 and p3 can have 

a value of 0 or  1: 

Suppose that we consider adjacency of pixels valued 1 (i.e. = {1}). If p1 and p3 are 0, 

the length    of the shortest m-path (the Dm distance) between p and p4 is 2. If p1 is 1, then p2 

and p will no longer be m-adjacent (see the definition of m-adjacency) and the length of the 

shortest m-path becomes 3 (the path goes through the point’s pp1p2p4). Similar comments 

apply if p3 is 1 (and p1      is 0); in this case, the length of the shortest m-path also is 3. 

Finally, if both p1 and p3 are 1 the length of the shortest m-path between p and p4 is 4. In this 

case, the path goes through the sequence of point’s pp1p2p3p4. 

Image Operations on a Pixel Basis 

Images were represented in the form of matrices. As we know, matrix division is not 

defined. However, when we refer to an operation like “dividing one image by another,” we 

mean specifically that the division is carried out between corresponding pixels in the two 

images. Thus, for example, if f and g are images, the first element of the image formed by 

“dividing” f by g is simply the first pixel in f divided by the first pixel in g; of course, the 

assumption is that none of the pixels in g have value 0. Other arithmetic and logic operations 

are similarly defined between corresponding pixels in the images involved. 

Linear and Nonlinear Operations 

Let H be an operator whose input and output are images. His said to be a linear operator 

if, for any two images f and g and any two scalars a and b, 

H(af + bg) = aH(f) + bH(g). 

the result of applying a linear operator to the sum of two images (that have been 

multiplied by the constants shown) is identical to applying the operator to the images 

individually, multiplying the results by the appropriate constants, and then adding those results. 

Linear operations are exceptionally important in image processing because they are 

based on a significant body of well-understood theoretical and practical results. Although 

nonlinear operations sometimes offer better performance, they are not always predictable, and 

for the most part are not well understood theoretically. 

An Introduction to the Mathematical Tools Used in Digital Image Processing 

This section has two principal objectives: (1) to introduce you to the various 

mathematical tools we use throughout the book; and (2) to help you begin de- veloping a 

“feel” for how these tools are used by applying them to a variety of basic image-

processing tasks, some of which will be used numerous times in subsequent discussions. 

We expand the scope of the tools and their application as necessary in the following 

chapters. 
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Array versus Matrix Operations 

An array operation involving one or more images is carried out on a pixel-by- 

pixel basis. We mentioned earlier in this chapter that images can be viewed 

equivalently as matrices. In fact, there are many situations in which opera- tions 

between images are carried out using matrix theory (see Section 2.6.6). It is for this 

reason that a clear distinction must be made between array and matrix operations. For 

example, consider the following 2 * 2 images: 

 

 

 

The array product of these two images is 

 

 

 

 

On the other hand, the matrix product is given  by 

 

 

We assume array operations throughout the book, unless stated otherwise. 

For example, when we refer to raising an image to a power, we mean that each 

individual pixel is raised to that power; when we refer to dividing an image by 

another, we mean that the division is between corresponding pixel pairs, and so 

on. 

 

Linear versus Nonlinear Operations 

One of the most important classifications of an image-processing method is 

whether it is linear or nonlinear. Consider a general operator, H that produces an output 

image, 

g (x, y), for a given input image, f (x, y): 

 

H is said to be a linear operator if 
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 Where ai, aj, fi(x, y), and fj(x, y) are arbitrary constants and images (of the 

same size), respectively. Equation (2.6-2) indicates that the output of a linear 

operation due to the sum of two inputs is the same as performing the operation on 

the inputs individually and then summing the results. In addition, the output of a 

linear operation to a constant times an input is the same as the out- put of the 

operation due to the original input multiplied by that constant. The first property is 

called the property of additivity and the second is called the property of homogeneity. 

As a simple example, suppose that H is the sum operator, ©; that is, the 

function of this operator is simply to sum its inputs. To test for linearity, we start 

with the left side of Eq. (2.6-2) and attempt to prove that it is equal to the right side: 

 

ECE/LIET 402 DIP NOTES Sudheer Asst Prof ECE Dept



Where the first step follows from the fact that summation is distributive. So, 

an expansion of the left side is equal to the right side of Eq. (2.6-2), and we con- 

clude that the sum operator is linear. 

On the other hand, consider the max operation, whose function is to find 

the maximum value of the pixels in an image. For our purposes here, the sim- plest 

way to prove that this operator is nonlinear, is to find an example that fails the 

test in Eq. (2.6-2). Consider the following two images 

 

 

 

and suppose that we let a1 = 1 and a2 = -1. To test for linearity, we again start 

with the left side of Eq. (2.6-2): 

 

 

Working next with the right side, we obtain 

 

The left and right sides of Eq. (2.6-2) are not equal in this case, so we 

have proved that in general the max operator is nonlinear. 

As you will see in the next three chapters, especially in Chapters 4 and 5, lin- 

ear operations are exceptionally important because they are based on a large 

body of theoretical and practical results that are applicable to image process- ing. 

Nonlinear systems are not nearly as well understood, so their scope of ap- 

plication is more limited. However, you will encounter in the following chapters 

several nonlinear image processing operations whose performance far exceeds 

what is achievable by their linear counterparts. 

 

Arithmetic Operations 

Arithmetic operations between images are array operations which, as 

discussed in Section 2.6.1, means that arithmetic operations are carried out 

between cor- responding pixel pairs. The four arithmetic operations are denoted as 

 

s(x, y) = f(x, y) +   g(x, y) 

d(x, y) = f(x, y) - g(x, y) 
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p(x, y) = f(x, y)  *  g(x, y) 

v(x, y) = f(x, y) , g(x, y) 

 

It is understood that the operations are performed between 

corresponding pixel pairs in f and g for  x =  0, 1, 2, Á , M - 1  and  y =  0, 1, 2, 

Á , N -  1 

  

A few comments about implementing image arithmetic operations are in 

order before we leave this section. In practice, most images are displayed using 

8 bits (even 24-bit color images consist of three separate 8-bit channels). Thus, we 

expect image values to be in the range from 0 to 255. When images are saved in 

a standard format, such as TIFF or JPEG, conversion to this range is automatic. 

However, the approach used for the conversion depends on the system used. For 

example, the values in the difference of two 8-bit images can range from a 

minimum of -255 to a maximum of 255, and the values of a sum image can range 

from 0 to 510. Many software packages simply set all negative values to 0 and 

set to 255 all values that exceed this limit when converting images to 8 bits. 

Given an image f, an approach that guarantees that the full range of an arithmetic 

operation between images is “captured” into a fixed number of bits is as follows. 

First, we perform the operation 

 

which creates an image whose minimum value is 0. Then, we perform 

the operation 

fs  =  K C fm>max( fm) D     (2.6-11)  

which creates a scaled image, fs, whose values are in the range [0, K]. 

When working with 8-bit images, setting K = 255 gives us a scaled image whose 

in- tensities span the full 8-bit scale from 0 to 255. Similar comments apply to 16-

bit images or higher. This approach can be used for all arithmetic operations. 

When performing division, we have the extra requirement that a small number 

should be added to the pixels of the divisor image to avoid division by 0. 
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Set and Logical Operations 

In this section, we introduce briefly some important set and logical 

operations. We also introduce the concept of a fuzzy set. 

 

Basic set operations 

Let A be a set composed of ordered pairs of real numbers. If a = (a1, a2) is an 

element of A, then we write 

 

Similarly, if a is not an element of A, we write 

(2.6-12) 

 

 

(2.6-13) 

The set with no elements is called the null or empty set and is denoted by the 

symbol Ø. 

A set is specified by the contents of two braces 

  

If every element of a set A is also an element of a set B, then A is said to be a 

subset of B, denoted as 

 

The union of two sets A and B, denoted by 

(2.6-14) 

 

 

(2.6-15) 

is  the  set  of  elements  belonging  to  either  A,  B,  or  both.  Similarly, the 

Intersection of two sets A and B, denoted by 

(2.6-16) 

Is the set of elements belonging to both A and B. Two sets A and B are said to be 

Disjoint or mutually exclusive if they have no common elements, in which case, 

               (2.6-17) 

 

 The set universe, U, is the set of all elements in a given application. By 

definition, all set elements in a given application are members of the universe de- 

fined for that application. For example, if you are working with the set of real 

numbers, then the set universe is the real line, which contains all the real numbers. 

In image processing, we typically define the universe to be the rectangle 

containing all the pixels in an image. 

The complement of a set A is the set of elements that are not in A: 

 

ECE/LIET 402 DIP NOTES Sudheer Asst Prof ECE Dept



The difference of two sets A and B, denoted A - B, is defined as 

 

 

(2.6-19) we see that this is the set of elements that belong to A, but not to B. We 

could, 

for  example,  define  Ac in  terms  of  U  and  the  set  difference operation: 

Ac = U - A. 

Figure 2.31 illustrates the preceding concepts, where the universe is the set of 

coordinates contained within the rectangle shown, and sets A and B are the sets of 

coordinates contained within the boundaries shown. The result of the set operation 

indicated in each figure is shown in gray 

In the preceding discussion, set membership is based on position (coordinates). An 

implicit assumption when working with images is that the intensity of all pixels in the 

sets is the same, as we have not defined set operations involving intensity values (e.g., 

we have not specified what the intensities in the intersection of two sets is). The only 

way that the operations illustrated in Fig. 

2.31 can make sense is if the images containing the sets are binary, in which case we can 

talk about set membership based on coordinates, the assumption being that all member 

of the sets have the same intensity. We discuss this in more de- tail in the following 

subsection. 

When dealing with gray-scale images, the preceding concepts are not applicable, 

because we have to specify the intensities of all the pixels resulting from a set 

operation. In fact, as you will see in Sections 3.8 and 9.6, the union and intersection 

operations for gray-scale values usually are defined as the max and min of 

corresponding pixel pairs, respectively, while the complement is defined as the 

pairwise differences between a constant and the intensity of every pixel in an image. 

The fact that we deal with corresponding pixel pairs tells us that gray-scale set 

operations are array operations, as defined in Section 2.6.1. The following example is 

a brief illustration of set operations involving gray-scale images. We discuss these 

concepts further in the two sections mentioned above. 
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Logical operations 

When dealing with binary images, we can think of foreground (1-valued) and 

background (0-valued) sets of pixels. Then, if we define regions (objects) as being 

composed of foreground pixels, the set operations illustrated in Fig. 2.31 become 

operations between the coordinates of objects in a binary image.  When dealing with 

binary images, it is common practice to refer to union, intersection, and complement as 

the OR, AND, and NOT logical operations, where “logical” arises from logic theory in 

which 1 and 0 denote true and false, respectively. 

Consider two regions (sets) A and B composed of foreground pixels. The OR of 

these two sets is the set of elements (coordinates) belonging either to A or B or to both. 

The AND operation is the set of elements that are common to A and B. The NOT 

operation of a set A is the set of elements not in A. Be- cause we are dealing with 

images, if A is a given set of foreground pixels, NOT(A) is the set of all pixels in the 

image that are not in A, these pixels being background pixels and possibly other 

foreground pixels. We can think of this operation as turning all elements in A to 0 

(black) and all the elements not in A to 1 (white). Figure 2.33 illustrates these 

operations. Note in the fourth row that the result of the operation shown is the set of 

foreground pix- els that belong to A but not to B, which is the definition of set 

difference in Eq. (2.6-19). The last row in the figure is the XOR (exclusive OR) 

operation, which is the set of foreground pixels belonging to A or B, but not both. 

Ob- serve that the preceding operations are between regions, which clearly can be 

irregular and of different sizes. This is as opposed to the gray-scale operations 

discussed earlier, which are array operations and thus require sets whose spa- tial 

dimensions are the same. That is, gray-scale set operations involve com- plete 

images, as opposed to regions of images. 

We need be concerned in theory only with the cability to implement the AND, OR, 

and NOT logic operators because these three operators are    functionally 
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Complete. In other words, any other logic operator can be implemented by using only 

these three basic functions, as in the fourth row of Fig. 2.33, where we implemented the 

set difference operation using AND and NOT. Logic operations are used extensively in 

image morphology 

 

Fuzzy sets 

The preceding set and logical results are crisp concepts, in the sense that ele- ments 

either are or are not members of a set. This presents a serious limitation in some 

applications. Consider a simple example. Suppose that we wish to cat- egorize all 

people in the world as being young or not young. Using crisp sets, let U denote the set 

of all people and let A be a subset of U, which we call the set of young people. In order 

to form set A, we need a membership function that assigns a value of 1 or 0 to every 

element (person) in U. If the value as- signed to an element of U is 1, then that element 

is a member of A; otherwise it is not. Because we are dealing with a bi-valued logic, 

the membership func- tion simply defines a threshold at or below which a person is 

considered young, and above which a person is considered not young. Suppose that 

we define as young any person of age 20 or younger. We see an immediate difficulty. 

A per- son whose age is 20 years and 1 sec would not be a member of the set of young 

people. This limitation arises regardless of the age threshold we use to classify a person 

as being young. What we need is more flexibility in what we mean by “young,” that 

is, we need a gradual transition from young to not young. The the- ory of fuzzy sets 

implements this concept by utilizing membership functions 

 

That are gradual between the limit values of 1 (definitely young) to 0 (definite- ly not 

young). Using fuzzy sets, we can make a statement such as a person being 50% young 

(in the middle of the transition between young and not young). In other words, age is 

ECE/LIET 402 DIP NOTES Sudheer Asst Prof ECE Dept



an imprecise concept, and fuzzy logic provides the tools to deal with such concepts. 

We explore fuzzy sets in detail in Section 3.8. 

 

Spatial Operations 

Spatial operations are performed directly on the pixels of a given image. We classify 

spatial operations into three broad categories: (1) single-pixel opera- tions, (2) 

neighborhood operations, and (3) geometric spatial transformations. 

Single-pixel operations 

The simplest operation we perform on a digital image is to alter the values of its 

individual pixels based on their intensity. This type of process may be ex- pressed as 

a transformation function, T, of the form: 

s = T (z) (2.6-20) 

Where z is the intensity of a pixel in the original image and s is the (mapped) intensity 

of the corresponding pixel in the processed image. For example, Fig. 2.34 shows the 

transformation used to obtain the negative of an 8-bit image, such as the image in Fig. 

2.32(b), which we obtained using set operations. We discuss in Chapter 3 a number of 

techniques for specifying intensity trans- formation functions. 

Neighborhood operations 

Let Sxy denote the set of coordinates of a neighborhood centered on an arbi- trary 

point (x, y) in an image, f. Neighborhood processing generates a corres- ponding pixel 

at the same coordinates in an output (processed) image, g, such that the value of that 

pixel is determined by a specified operation involving the pixels in the input image 

with coordinates in Sxy. For example, suppose that the specified operation is to 

compute the average value of the pixels in a rec- tangular neighborhood of size m * n 

centered on (x, y). The locations of pixels 
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in this region constitute the set Sxy. Figures 2.35(a) and (b) illustrate the 

process. We can express this operation in equation form as 

 

 

 

 

where r and c are the row and column coordinates of the pixels whose coordi- 

nates are members of the set Sxy. Image g is created by varying the coordi- nates 

(x, y) so that the center of the neighborhood moves from pixel to pixel in image f, 

and repeating the neighborhood operation at each new location. For instance, the 

image in Fig. 2.35(d) was created in this manner using a neigh- borhood of size 

41 * 41. The net effect is to perform local blurring in the orig- inal image. This 

type of process is used, for example, to eliminate small details and thus render 

“blobs” corresponding to the largest regions of an image. We discuss 

neighborhood processing in Chapters 3 and 5, and in several other places in the 

book. 
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Image Transforms 

Need For Image Transforms & Spatial Frequencies in Image Processing 

All the image processing approaches discussed thus far operate directly on 

the pixels of the input image; that is, they work directly in the spatial domain. In 

some cases, image processing tasks are best formulated by transforming the 

input images, carrying the specified task in a transform domain, and applying the 

inverse transform to return to the spatial domain. You will encounter a number 

of different transforms as you proceed through the book. A particu- larly 

important class of 2-D linear transforms, denoted T(u, v), can be ex- pressed in 

the general form 

 

 

 

where f(x, y) is the input image, r(x, y, u, v) is called the forward  transformation  

kernel, and  Eq. (2.6-30)  is  evaluated  for u =  0, 1, 2, Á , M – 1 and v = 0, 1, 

2, Á , N - 1. As before, x and y are spatial variables, while M and N are the 

row and column dimensions of f.  

 

 

 

 

 

 

 

 

Variables u and v are called the transform variables. T(u, v) is called the forward 

transform of  f(x, y). Given T(u, v), we can recover f(x, y) using the inverse 

transform of T(u, v), 

for x = 0, 1, 2, Á , M - 1 and y = 0, 1, 2, Á , N - 1,  

 

Where s(x, y, u, v) is called the inverse transformation kernel. Together, Eqs. 

(2.6-30) and (2.6-31) are called a transform pair. 

Figure 2.39 shows the basic steps for performing image processing in the 

linear transform domain. First, the input image is transformed, the transform is 

then modified by a predefined operation, and, finally, the output image is 

obtained by computing the inverse of the modified transform. Thus, we see that 

the process goes from the spatial domain to the transform domain and then back 

to the spatial domain. 
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Sampling and the Fourier transform of sampled functions: 

This section introduces the Fourier transform in one and two dimensions. The 

focus is mostly on a discrete formulation of the continuous transform and some of its 

properties.  

The One-Dimensional Fourier Transform and its Inverse 

The Fourier transform, F (u), of a single variable, continuous function, f (x), is defined 

by the equation 

 
Where j2 =-1 .Conversely, given F(u),w e can obtain f(x) by means of the inverse Fourier 

transform 

 
These two equations comprise the Fourier transform pair. They indicate the important 

fact mentioned in the previous section that a function can be recovered from its transform. 

These equations are easily extended to two variables, u and v: 

 
and, similarly for the inverse transform, 

 
The Fourier transform of a discrete function of one variable, f ( x ) , x = 0,1, 2,. . . , M - 

1, is given by the equation 

 
This discrete Fourier transform (DFT) is the foundation for most of the work in this 

chapter. Similarly, given F(u), we can obtain the original function back using the inverse 

DFT: 

 
The 1/M multiplier in front of the Fourier transform sometimes is placed in front of the 

inverse instead. Other times (not as often) both equations are multiplied by l/√M. The 

location of the multiplier does not matter. If two multipliers are used, the only requirement 

is that their product be equal to 1/M. considering their importance, these equations really 

are very simple. 

 

In order to compute F(u) in Eq. (4.2-5) we start by substituting u = 0 in the exponential 

term and then summing for all values of x. We then substitute u = 1 in the exponential 

and repeat the summation over all values of x. We repeat this process for all M values sf 
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u in order to obtain the complete Fourier transform. It takes approximately M~ 

summations and multiplications to compute the discrete Fourier transform (reduction of 

this number is an important topic of discussion in Section 4.6). Like f (x), the transform 

is a discrete quantity, and it has the same number of components as f ( x ) . Similar 

comments apply to the computation of the inverse Fourier transform. 

 

An important property of the discrete transform pair is that, unlike the continuous case, 

we need not be concerned about the existence of the DFT or its inverse. The discrete 

Fourier transform and its inverse always exist. for digital image processing, existence of 

either the discrete transform OP its inverse is not an issue. 

 

The concept of the frequency domain follows directly from Euler's formula: 

 
Substituting this expression into Eq. (4,2-5), and using the fact that cos (-θ) = cos θ, gives 

us 

 
for u = 0, I, 2,. . . , M - 1. Thus, we see that each term of the Fourier transform [that is, 

the value of F(u) for each value of u] is composed of the sum of all values of the function 

f (x).The values off (x), in turn, are multiplied by sines and cosines of various frequencies. 

The domain (values of u) over which the values of F(u) range is appropriately called the 

frequency domain, because u determines the frequency of the components of the 

transform. (The x's also affect the frequencies, but they are summed out and they all make 

the same contributions for each value of u.) Each of the M terms of F (LIi)s called a 

frequency component of the transform. Use of the terms frequency domain and frequency 

components is really no different from the terms time domain and time components, which 

we would use to express the domain and values off ( x ) if x were a time variable. 

 

A useful analogy is to compare the Fourier transform to a glass prism. The prism is a 

physical device that separates light into various color components; each depending an its 

wavelength (or frequency) content. The Fourier transform may be viewed as a 

"mathematical prism that separates a function into various components, also based on 

frequency content. When we consider light, we talk about its spectral or frequency 

content. Similarly, the Fourier transform lets us characterize a function by its frequency 

content. This is a powerful concept that lies at the heart of linear filtering. 

 

The components of the Fourier transform are complex quantities. As in the analysis of 

complex numbers, we find it convenient sometimes to express F(u) in polar coordinates: 
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is called the magnitude or spectrum of the Fourier transform, and 

 
is called the phase angle or phase spectrum of the transform. R(u) and I(u) are the real 

and imaginary parts of F(u), respectively. In terms of image enhancement we are 

concerned primarily with properties of the spectrum. 

Power spectrum, defined as the square of the Fourier spectrum: 

 
The term spectral density also is used to refer to the power spectrum. 

 

In the discrete transform, the function f (x) for x = 0,1,2,. . . , M - 1, represents M samples 

from its continuous counterpart. It is important to keep in mind that these samples are not 

necessarily always taken at integer values of x in the interval [O. M - l].They are taken at 

equally spaced, but otherwise arbitrary, points. This is usually represented by letting xo 

denote the first (arbitrarily located) point in the sequence. The first value of the sampled 

function is then f(xo). The next sample has taken a fixed interval Ax units away to give f 

(x,, + Ax). The kth sample gives us f (xu + kAx), and the final sample is f (x,, + [M - 

l]Ax).Thus, in the discrete case, when we write f (k), it is understood that we are utilizing 

shorthand notation that really means f (x, + k~x)In. terms of the notation we have used 

thus far, f (x) is then understood to mean 

 
when dealing with discrete variables.7he variable u has a similar interpretation, but the 

sequence always starts at true zero frequency. Thus the sequence for the values of u is 0, 

Au, ZAu, . . . , [M - l]Au. Then, F(u) is understood to mean 

 
for u = 0,1,2,. . . , M - 1. This type of shorthand notation simplifies equations considerably 

and is much easier to follow. 
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Given the inverse relationship between a function and its transform illustrated in Fig, it 

is not surprising that Ax and Au are inversely related by the expression 

 
This relationship is useful when measurements are an issue in the images being processed. 

Extension to functions of two variables:  

The discrete Fourier transform of a function (image) f (x, y) of size M x N is given by the 

equation 

 
This expression must be computed for values of u = 0, 1, 2,.. . ,M - 1, and also for v = 

0,1,2,. . . . N - 1. Similarly given F(u, u ) , we obtain f ( x , y) via the inverse Fourier 

transform, given by the expression 

 
for x = 0, 1, 2 ,... , M - 1 and y = 0, 1,2, ... , N - 1. Both Equations comprise the two-

dimensional, discrete Fourier transform (DFT) pair. The variables u and v are the 

transform or frequency variables and x and y are the spatial or image variables. As in 

the one-dimensional case the location of the 1/MN constant is not important. Sometimes 

it is located in front of -the inverse transform. Other times it is found split into two equal 

terms of 1/√MN multiplying the transform and its inverse. 
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We define the Fourier spectrum, phase angle. and power spectrum as 

 
where R(u,v) a nd I(u,v ) are the real and imaginary parts of F(u,v ),respectively. 

It is common practice to multiply the input image function by (-1 )x+y prior to computing 

the Fourier transform. 

 
where Ʒ[.] denotes the Fourier transform of the argument. This equation states that the 

origin of the Fourier transform off (x, y)(-l)Xty [that is, F(O, O)] is located at u = M/2 and 

v = N/2. In other words, multiplying f (x, y) by (-I)'+? Shifts the origin of F(u,v ) t o 

frequency coordinates (M/2,N /2)which is the center of the M X N area occupied by the 

2-D DFT. We refer to this area of the frequency domain as the frequency rectangle. It 

extends from 11 = 0 to u = M - 1, and from v = 0 to v = N - 1 (keep in mind that u and v 

are integers). In order to guarantee that these shifted coordinates are integers. we require 

that M and N be even numbers. When implementing the Fourier transform in a computer, 

the limits of summations are from u = 1 to M and v = 1 to N= The actual center of the 

transform will then be at u = (M/2) + 1 and u = (W/2) + 1. 

 

The value of the transform at (u, v) = (0,0) is, 

 
which we see is the average off ( x , y). In other words, if (x, y ) is an image, the value of 

the Fourier transform at the origin is equal to the average gray level of the image. Because 

both frequencies are zero at the origin, F (0,0) sometimes is called the dc component of 

the spectrum. This terminology is from electrical engineering, where "dc" signifies direct 

current (i.e., current of zero frequency. 

If (x, y) is real, its Fourier transform is conjugate symmetric; that is, 

 
where "*" indicates the standard conjugate operation an a complex number. From this, it 

follows that 

 

ECE/LIET 402 DIP NOTES Sudheer Asst Prof ECE Dept



which says that the spectrum of the Fourier transform is symmetric. 

 

The relationships between samples in the spatial and frequency domains: 

 
Some Additional Properties of the 2-D Fourier Transform Translation 

The Fourier transform pair has the following translation properties: 

 

 
The double arrow is used to designate a Fourier transform pair. When uo = M/2 and vo = 

N/2, it follows that: 

 

 

 
These results are based on the variables u and v having values in the range [0, M - 11 and 

[O, N - I], respectively. In a computer implementation these variables will run from u = 

1 to M and v = 1 to N, in which case the actual center of the transform will be at u = (M/2) 

+ 1 and v = ( N / 2 ) + 1. 

 

Distributivity and scaling 

From the definition of the Fourier transform it follows that 

 

 
The Fourier transform is distributive over addition, but not over multiplication. Identical 

comments apply to the inverse Fourier transform. Similarly, for two scalars a and b, 

 
Rotation 
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If we introduce the polar coordinates 

 
then f ( x ,y ) and F(u,v) become f (r, θ ) and F(w,φ), respectively. Direct substitution into 

the definition of the Fourier transform yields 

 
This expression indicates that rotating f (x, y) by an angle θ0 rotates F (u, v) by the same 

angle. Similarly, rotating F(u,v) rotates f (x, y) by the same angle. 

 

Periodicity and conjugate symmetry 

The discrete Fourier transform has the following periodicity properties: 

 
The inverse transform also is periodic: 

 
The idea of conjugate symmetry is 

 
from which it follows that the spectrum also is symmetric about the origin: 

 
Separability 

 

The discrete Fourier transform can be expressed in the separable form 

 
For each value of x, and for values of v = 0,1,2,. . . , N - 1, this equation is a complete 1-

D Fourier transform. In other words, F(x, v) is the Fourier transform along one row off 

(x, y). By varying x from 0 to M - I, we compute the Fourier transform along all rows off 

( x , y). Thus far, the frequency variable u has remained constant. To complete the 2-D 

transform we have to vary u from 0 to M - 1 in Eq. After a little thought, it becomes 

evident that this involves computing the 1-D transform along each column of F(x, v).This 

is an important result. It tells us that we can compute the 2-D transform by first computing 

a 1-D transform along each row of the input image, and then computing a 1-D transform 

along each column of this intermediate result. The same comments hold if we reverse the 
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order of computation: columns first, followed by rows. 

A similar development applies to computing the 2-D inverse Fourier transform. We first 

compute 1-D inverse transforms along each row of F(u. v) and then compute inverse 1-

D transforms along each column of the intermediate result. As shown in the following 

section, it is possible to implement the inverse transform using a 1-D ,forward Fourier 

transform algorithm. 

 
Computing the Inverse Fourier Transform Using a Forward Transform Algorithm 

2-D Fourier transforms can be computed via the application of 1-D transforms. The 1-D 

Fourier transform pair was defined 

 

 
for x = 0,1,2,. . . , M - 1.Taking the complex conjugate of Eq. and dividing both sides by 

M yields 

 
Therefore, inputting F*(u) in to an algorithm designed to compute the forward transform 

gives the quantity f*(x)/M. Taking the complex conjugate and multiplying by M yields 

the desired inverse f ( x ) . A similar analysis for two variables yields: 

 
which is in the form of a 2-D forward Fourier transform. If f ( x ) or f (x, y ) are real 

functions (e.g., an image), then the complex conjugate on the left of Eq. is unnecessary; 

we simply take the real part of the result, ignoring the parasitic complex terms that are 

typical in most Fourier transform computations. 

 

Computation of the 2-D transform by successive passes of the 1-D transform is a frequent 

source of confusion when the technique we have just developed is used to obtain the 

inverse. In other words, when a 1-D algorithm is used to compute the 2-D inverse, we do 

not compute the complex conjugate after processing each row or column. Instead, the 
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function F*(u, v) is treated as if it were f ( x , y) in the forward, 2-D transform procedure 

summarized in Fig. 4.35. The complex conjugate (or real part, if applicable) of the result, 

multiplied by MN, yields the proper inverse f ( x , y). We emphasize that the preceding 

comments regarding the constants M and N are based on the definition of the discrete 

Fourier transform that has all constants associated with the forward transform. 

More on Periodicity: the Need for Padding 

based on the convolution theorem, multiplication in the frequency domain is equivalent 

to convolution in the spatial domain, and vice versa. When working with discrete 

variables and the Fourier transform, we need to keep in mind the periodicity of the various 

functions involved. Although it may not be intuitive, this periodicity is a mathematical 

byproduct of the way in which the discrete Fourier transform pair is defined. Periodicity 

is part of the process, and it cannot be ignored. 

 
To simplify the notation, simple numbers instead of general symbols are used for the 

height and length of the functions. Figures (a) and (b) show the two functions we wish to 

convolve. Each function consists of 400 points. The first step in convolution is to mirror 

(flip) one of the functions about the origin. In this case this was done to the second 

function. Which is shown as h(-m)in Fig.(c).The next step is to "slide" h(-m) past 

f(m).This is done by adding a constant,^, to h(-m); that is, we form h(x - m), as shown in 

Fig.(d). Note that this is only one displacement value. This simple step is a frequent source 

of confusion when first encountered. It helps to remember that this is precisely what 

convolution is all about. In other words! to perform convolution we flip one oi the 

functions and slide it past the other. At each displacement (each value of x) the entire 

summation in Eq  is carried out. This summation is nothing more than the sum of products 

off and h at a given displacement. The displacement x ranges over all values required to 

completely slide h past f. Figure (e) shows the result of completely sliding h past f and 

computing Eq. at each value of x. In this case x had to range for 0 to 799 for h(x - m) to 

slide completely past f. This figure is the convolution of the two functions. Keep clearly 

in mind that the variable in convolution is x. 

 

Using the DFT allows us to perform convolution in the frequency domain, but the 

functions are treated as periodic, with a period equal to the length of the functions. 

 

In the frequency domain the procedure would be to compute the Fourier transforms of 

the functions in Figs.(a) and (b). According to the convolution theorem, the two 

transforms would then be multiplied and the inverse Fourier transform taken. The result 

would be the 400 points comprising the convolution shown in solid in Fig (j).This simple 

illustration shows that failure to handle the periodicity issue properly will give incorrect 

results if the convolution function is obtained using the Fourier transform. The result will 

have erroneous data at the beginning and have missing data at the end. 
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The solution to this problem is straightforward. Assume that f and h consist of A and B 

points, respectively. We append zeros to both functions so that they have identical 

periods, denoted by P. This procedure yields extended, or padded, functions given by 

 

 
It can be show that, unless we choose P A + B - 1, the individual periods of the convolution 

will overlap. We already saw in Fig. the result of this phenomenon, which is commonly 

referred to as wrap around error. If P = A + B - 1. The periods will be adjacent. If P > A 

+ B - 1, the periods will be separated, with the degree of separation being equal to the 

difference between P and A + B - 1. 

 

Extension of these concepts to 2-D functions follows the same line of reasoning. Suppose 

that we have two images f (x, y) and h(x. y) of sizes A X Band C X D, 1.espectively. As 

in the 1 -D case, these arrays must be assumed periodic with some period P in the x-

direction and Q in the y-direction. Wraparound error in 2-D convolution is avoided by 

choosing 
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The periodic sequences are f6rrned by extending f ( x , y) and h(x, y ) as follows: 
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The issue of padding is central to filtering. When we implement any of the frequency 

domain filters discussed in this chapter, we do it by multiplying the filter transfer function 

by the transform of the image we wish to process. By the convolution theorem, we know 

that this is the same as convolving the spatial representation of the filter with the image. 

Thus, unless proper padding is implemented, the results will be erroneous. 

 

The Convolution and Correlation Theorems 

The discrete convolution of two functions f(x, y ) and h(x, y ) of size M x N is denoted by 

f ( x , y) * h(x. y ) and is defined by the expression 

 
The convolution theorem consists of the following relationships between the two 

functions and their Fourier transforms: 

 
The correlation of two functions f (x, y) and h(x,y ) is defined as 

 
where f * denotes the complex conjugate off. We normally deal with real functions 

(images), in which case f * = f. The correlation function has exactly the same form as the 

convolution function with the exception of the complex conjugate and the fact that the 

second-term in the summation has positive instead of negative signs. This means that h 

is not mirrored about the origin. Everything else in the implementation of correlation is 

identical to convolution, including the need for padding. 

Given the similarity of convolution and correlation, it is not surprising that there is a 

correlation theorem, analogous to the convolution theorem. Let F(u, v) and H(u,v) denote 

the Fourier transforms of f( x ,y ) and h( x ,y ), respectively. One-half of the correlation 
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theorem states that spatial correlation, f ( x ,y ) 0 h(x, y ) , and the frequency domain 

product, F * (u, v ) H( u, v ), constitute a Fourier transform pair. This result, formally 

stated as 

 
indicates that correlation in the spatial domain can be obtained by taking the inverse 

Fourier transform of the product F*(u, v) H(u, v), where F* is the complex conjugate of 

F. An analogous result is that correlation in the frequency domain reduces to 

multiplication in the spatial domain: that is, 

 
These two results comprise the correlation theorem. It is assumed that all functions have 

been properly extended by padding. 

As we know by now, convolution is the tie between filtering in the spatial and frequency 

domains. The principal use of correlation i s for matching. In matching, f ( x , y) is an 

image containing objects or regions. If we want to determine whether f contains a 

particular object or region in which we are interested, we let h(x, y) be that object or 

region (we normally call this image a template). Then, if there is a match, the correlation 

of the two functions will be maximum at the location where h finds a correspondence in 

f. preprocessing, like scaling and alignment is necessary in most practical applications, 

but the bulk of the process is performing the correlation. 

 

Finally, we point out that the term cross correlation often is used in place of the term 

correlation to clarify that the images being correlated are different. This is as opposed to 

auto correlation in, which both images are identical. In the latter case, we have the 

autocorrelation theorem 

 
On the right side, we used the fact that the product of a complex quantity and its complex 

conjugate is the magnitude of the complex quantity squared. In words, this result states 

that the Fourier transform of the spatial autocorrelation is the power spectrum defined 
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Summary of Properties of the 2-D Fourier Transform 
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Filtering in the Frequency Domain 

The frequency domain is nothing more than the space defined by values of the 

Fourier transform and its frequency variables (u,v). 

Some basic properties of the frequency domain 

We start by observing in Eq  that each term of F(u,v) contains all values of f (x, 

y), modified by the values of the exponential terms. Thus, with the exception of trivial 

cases, it usually is impossible to make direct associations between specific components 

of an image and its transform. 
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since frequency is directly related to rate of change, it is not difficult intuitively to 

associate frequencies in the Fourier transform with patterns of intensity variations in an 

image. 

The slowest varying frequency component (u = v = 0) corresponds to the average gray 

level of an image. As we move away from the origin of the transform, the low frequencies 

correspond to the slowly varying components of an image. 

As we move further away from the origin, the higher- frequencies begin to correspond to 

faster and faster gray level changes in the image. These are the edges of objects and other 

components of an image characterized by abrupt changes in gray level, such as noise. 

Introduction to Fourier Transform 

The forward transformation kernel is said to be 

separable if 

r(x, y, u, v) = r1(x, u)r2(y, v) 

 

 

(2.6-32) 

In addition, the kernel is said to be symmetric if r1(x, y) is functionally equal to 

r2(x, y), so that 

                                    r(x, y, u, v) = r1(x, u)r1(y,v ) (2.6-33) 

Identical comments apply to the inverse kernel by replacing r with 

s in the pre- ceding equations. 

The 2-D Fourier transform discussed in Example 2.11 has the 

following for- ward and inverse kernels: 

 

                    
2 ( / / )( , , , ) j ux M vy Nr x y u v e  

ECE/LIET 402 DIP NOTES Sudheer Asst Prof ECE Dept



 

And 

2 ( / / )1
( , , , ) j ux M vy Ns x y u v e

MN

   

 

Respectively, where j  = 1 , so these kernels are complex. Substituting these 

kernels into the general transform formulations in Eqs. (2.6-30) and (2.6-31) 

gives us the discrete Fourier transform pair: 

 

 

 

1 1
2 ( / / )

0 0

( , ) ( , )
M N

j ux M vy N

x y

T u v f x y e 
 

 

 

  

And 

 

1 1
2 ( / / )

0 0

1
( , ) ( , )

M N
j ux M vy N

x y

f x y T u v e
MN


 



 

   

 

These equations are of fundamental importance in digital image processing, and 

we devote most of Chapter 4 to deriving them starting from basic principles and 

then using them in a broad range of applications. 

It is not difficult to show that the Fourier kernels are separable and symmetric 

(Problem 2.25), and that separable and symmetric kernels allow 2-D transforms 

to be computed using 1-D transforms (Problem 2.26). When  the forward and 

inverse kernels of a transform pair satisfy these two conditions, and f(x, y) is a 

square image of size M * M, Eqs. (2.6-30) and (2.6-31) can be expressed in 

matrix form: 

T = AFA                                                                      (2.6-38) 

where F is an M * M matrix containing the elements of f(x, y) [see Eq. (2.4-2)], A 

is an  M * M matrix with elements  aij = r1(i, j),  and T is the resulting    M * 

M transform, with values T(u, v) for u, v = 0, 1, 2, Á , M - 1. 

To obtain the inverse transform, we pre- and post-multiply Eq. (2.6-38) by an 

inverse transformation matrix B: 

 

 

If B = A-1, 

BTB  = BAFAB 

 

 

F  = BTB 

(2.6-39) 

 

 

(2.6-40) 
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indicating that F [whose elements are equal to image f(x, y)] can be recov- ered 

completely from its forward transform. If B is not equal to A-1, then use of Eq. (2.6-

40) yields an approximation. 

 

F = BAFAB (2.6-41) 

*) Fourier Transform and its inverse. 

 

Let f(x) be a continuous function of a real variable x. The Fourier transform of f(x) is 

defined by the equation 

 

 

Where j = √-1 

 

Given F(u), f(x) can be obtained by using the inverse Fourier  transform 

 

 

The Fourier transform exists if f(x) is continuous and integrable and F(u) is integrable. 

The Fourier transform of a real function, is generally  complex, 

F(u) = R(u) + jI(u) 

 

Where R(u) and I(u) are the real and imiginary components of F(u). F(u) can be expressed in 

exponential form as 

F(u) = 

│F(u)│e
jØ(u) 

 

where 

│F(u)│ = [R
2
(u) + I

2
(u)]

1/2         
and

         
Ø (u, v) = tan

-1
[ I (u, v)/R (u, v) ]

 

 

The magnitude function |F (u)| is called the Fourier Spectrum of f(x) and Φ(u) its 

phase angle. The variable u appearing in the Fourier transform is called the frequency  

variable. 
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Fig 1 A simple function and its Fourier spectrum 

 

The Fourier transform can be easily extended to a function f(x, y) of two variables. If 

f(x, y) is continuous and integrable and F(u,v) is integrable, following Fourier 

transform pair  exists 

 

 

and 

 

 

 

 

\ 

 

Where u, v are the frequency variables The Fourier spectrum, phase, are 

│F(u, v)│ = [R
2
(u, v) + I

2
(u, v )]

1/2 

Ø(u, v) = tan
-1

[ I(u, v)/R(u, v) ] 

 

 Discrete Fourier transform and its inverse. 

 

The discrete Fourier transform pair that applies to sampled function is given  

by, 

 

 
(1) For u = 0, 1, 2 . . . . , N-1, and 
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(2) 

 

For x = 0, 1, 2  . . . ., N-1. 

 

In the two variable case the discrete Fourier transform pair  is 

 

 

For u = 0, 1, 2 . . . , M-1, v = 0, 1, 2 . . . , N - 1, and 

 

 

For x = 0, 1, 2 . . . , M-1, y = 0, 1, 2 . . . , N-1. 

 

If M = N, then discrete Fourier transform pair is 

 

 

For u, v = 0, 1, 2 . . . , N – 1, and 

 

 

For x, y = 0, 1, 2 . . . , N – 1 

 

Fast Fourier Transform 

Fourier Transform decomposes an image into its real and imaginary components 

which is a representation of the image in the frequency domain. If the input signal is an 

image then the number of frequencies in the frequency domain is equal to the number 

of pixels in the image or spatial domain. The inverse transform re-transforms the 

frequencies to the image in the spatial domain. The FFT and its inverse of a 2D image 

are given by the following equations: 
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Where f(m,n) is the pixel at coordinates (m, n), F(x,y) is the value of the image in the 

frequency domain corresponding to the coordinates x and y, M and N are the dimensions 

of the image. 

As can be seen from the equation, a naïve implementation of this algorithm is very 

expensive. But the beauty of FFT is that it is separable, namely, the 2D transform can 

be done as 2 1D transforms as shown below (shown only in the horizontal direction) - 

one in the horizontal direction followed by the other in the vertical direction on the result 

of the horizontal transform. The end result is equivalent to performing the 2D transform 

in the frequency space. 

 
The FFT that's implemented in the application here requires that the dimensions of the 

image are a power of two. Another interesting property of the FFT is that the transform 

of N points can be rewritten as the sum of two N/2 transforms (divide and conquer). 

This is important because some of the computations can be reused thus eliminating 

expensive operations. 

The output of the Fourier Transform is a complex number and has a much greater range 

than the image in the spatial domain. Therefore to accurately represent these values, 

they are stored as floats. Furthermore, the dynamic range of the Fourier coefficients are 

too large to be displayed on the screen, and hence, these values are scaled (usually by 

dividing by Height*Width of the image) to bring them within the range of values that 

can be displayed [3]. 

Properties of Fourier transform  

separability property of  2D-DFT. 

 

The separability property of 2D-DFT states that, the discrete Fourier transform 

pair can be expressed in the separable forms. i.e. , 
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(1) 

 

 

For u, v = 0, 1, 2 . . . , N – 1, and 

 

     (2) 

 

For x, y = 0, 1, 2 . . . , N – 1 

 

The principal advantage of the separability property is that F(u,v) or f(x,y) can be obtained in 

two steps by successive applications of the 1-D Fourier transform or its inverse. This 

advantage becomes evident if equation (1) is expressed in the  form 

   (3) 

Where, 

 

 

(4) 

 

For each value of x, the expression inside the brackets in eq(4) is a 1-D transform, with 

frequency values v = 0, 1, . . . , N-1. Therefore the 2-D function f(x, v) is obtained by taking a 

transform along each row of f(x, y) and multiplying the result by N. The desired result, F(u, 

v), is then obtained by taking a transform along each column of F(x, v), as indicated by  eq(3) 

 

 

(d)the translation property. 

 

The translation properties of the Fourier transform pair are 

 

 (1) 

and 

 

 

(2) 

 

Where the double arrow indicates the correspondence between a function and its Fourier 

Transform, 
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Equation (1) shows that multiplying f(x, y) by the indicated exponential term and taking 

the transform of the product results in a shift of the origin of the frequency plane to the 

point (uo, vo). 

Consider the equation (1) with uo = vo = N/2 or 

exp[j2Π(uox + voy)/N] = e
jΠ(x +  y) 

= (-1)
(x + y) 

 

and  

f(x, y)(-1)
x +y 

# F(u – N/2, v – N/2) 

 

Thus the origin of the Fourier transform of f(x, y) can be moved to the center of its 

corresponding N x N frequency square simply by multiplying f(x, y) by (-1)
x+y 

. In 

the one variable case this shift reduces to multiplication of f(x) by the term (-1)
x

. Note 

from equation (2) that a shift in f(x, y) does not affect the magnitude of its Fourier 

transform  as, 

 

 

(iii) distributivity and scaling property. 

 

Distributivity: 

 

From the definition of the continuous or discrete transform pair, 

 

 

and, in general, 
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In other words, the Fourier transform and its inverse are distributive 

over addition but not over multiplication. 

Scaling: 

 

For two scalars a and b, 

 

af (x, y) # aF(u, v) 

 

Walsh transform. 

 

The discrete Walsh transform of a function f (x), denoted W(u), is given  by 

 

 

Walsh transform kernel is symmetric matrix having orthogonal rows and 

columns. These properties, which hold in general, lead to an inverse kernel given  

by 

 

 

Thus the inverse Walsh transform is given by 

 

 

The 2-D forward and inverse Walsh kernels are given by 

 

 

and 

 

 

Thus the forward and inverse Walsh transforms for 2-D are given  by 
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and 

 
 

The Walsh Transform kernels are seperable and symmetric,  because 

 

 

 

 

Values of the 1-D walsh transform kernel for N = 8 is 

 

 
 

Hadamard transform. 

 

1-D forward kernel for hadamard transform is 

Expression for the 1-D forward Hadamard transform  is 

Where N = 2
n 

and u has values in the range 0, 1, . . . ,  N-1. 

1-D inverse kernel for hadamard transform is 
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Expression for the 1-D inverse Hadamard transform is 

 

 

The 2-D kernels are given by the relations 

 

 

 

and 

 

 

 

2-D Hadamard transform pair is given by following equations 

 

 

 

 

 

 

Values of the 1-D hadamard transform kernel for N = 8 is 

 

 

 

 

 

 

 

The Hadamard matrix of lowest order N = 2 is 

 

 

 

 

 If HN represents the matrix of order N, the recursive relationship is given  by 
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 Where H2N is the Hadamard matrix of order 2N and N = 2
n 

 

Haar transform. 

 

The Haar transform is based on the Haar functions, hk(z), which are defined over the 

continuous, closed interval z ε [0, 1], and for k = 0, 1, 2 . . . , N-1, where N = 2
n
. The first step 

in generating the Haar transform is to note that the integer k can be decomposed uniquely  as 

k = 2
p 

+ q - 1 

where 0 ≤ p ≤ n-1, q = 0 or 1 for p = 0, and 1 ≤ q ≤ 2
p 

for p ≠ 0. For example, if N = 4, k, q, p 

have following values 

 

 

 

 
 

The Haar functions are defined as 

 

 

for z ε [0, 1] ……. (1) 

 

and 

 

 

These results allow derivation of Haar transformation matrices of order N x N by 

formation of   the ith row of a Haar matrix from elements oh hi(z) for z = 0/N, 1/N, . . 

. , (N-1)/N. For instance, when N = 2, the first row of the 2 x 2 Haar matrix is 

computed by using ho(z) with z = 0/2, 1/2. From equation (1) , ho(z) is equal to , 

independent of z, so the first row of the matrix has  two 

identical  elements. Similarly row is computed. The 2 x 2 Haar matrix  is 
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Similarly matrix for N = 4 is 

 

Properties of Haar transform: 

 

(a) The Haar transform is real and orthogonal. 

 

(b) The Haar transform is very fast. It can implement O(n) operations on an N x 1  vector. 

 

(c) The mean vectors of the Haar matrix are sequentially  ordered. 

 

(d) It has a poor energy deal for images. 

 

Slant transform. 

 

The Slant transform matrix of order N x N  is the recursive expression Sn is given  by 

 

 

Where Im is the identity matrix of order M x M,  and 

 

The coefficients are 

 

 

and 
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The slant transform for N = 4 will be 

 

 

Properties of Slant transform 

 

(e) The slant transform is real and orthogonal. 

S = S
* 

S
-1 

= S
T 

(f) The slant transform is fast, it can be implemented in (N log2N) operations on an 

N x 1  vector. 

 

(g) The energy deal for images in this transform is rated in very good to excellent  

range. 

 

(h) The mean vectors for slant transform matrix S are not sequentially ordered for n ≥  

3. 
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Discrete cosine transform. 

 

The 1-D discrete cosine transform is defined as 

 

 

For u = 0, 1, 2, . . , N-1. Similarly the inverse DCT is defined  as 

 

 
 

For u = 0, 1, 2, . . , N-1 

 

Where α is 

 

 

The corresponding 2-D DCT pair is 

 

 

For u, v = 0, 1, 2, . . , N-1, and 

 

 

For x, y= 0, 1, 2, . . , N-1 

 

 

SVD and KL Transfrom or The basic principle of Hotelling transform. 

 

Hotelling transform: 

 

The basic principle of hotelling transform is the statistical properties of vector 
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representation. Consider a population of random vectors of the  form, 

 

 

And the mean vector of the population is defined as the expected value of x  i.e., 

 

mx = E{x} 

 

The suffix m represents that the mean is associated with the population of x vectors. The 

expected value of a vector or matrix is obtained by taking the expected value of each  

elememt. 

The covariance matrix Cx in terms of x and mx is given as 

Cx = E{(x-mx) (x-mx)
T

} 

T denotes the transpose operation. Since, x is n dimensional, {(x-mx) (x-mx)
T

} will 

be of n x n dimension. The covariance matrix is real and symmetric. If elements xi 

and xj are uncorrelated, their covariance is zero and, therefore, cij = cji =  0. 

For M vector samples from a random population, the mean vector and covariance matrix can 

be approximated from the samples by 

 
 

 

and 
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UNIT- II INTENSITY TRANSFORMATIONS AND SPATIAL 

FILTERING 

 

Background: 

Image enhancement approaches fall into two broad categories: spatial domain 

methods and frequency domain methods. The term spatial domain refers to the image 

plane itself, and approaches in this category are based on direct manipulation of pixels in 

an image. Frequency domain processing techniques are based on modifying the Fourier 

transform of an image. 

 

Basic Gray Level Transformations: 

 

The study of image enhancement techniques is done by discussing gray-level 

transformation functions. These are among the simplest of all image enhancement techniques. 

The values of pixels, before and after processing, will be denoted by r and s, respectively. As 

indicated in the previous section, these values are related by an expression of the form s=T(r), 

where T is a transformation that maps a pixel value r into a pixel value s. Since we are dealing 

with digital quantities, values of the transformation function typically are stored in a one-

dimensional array  and the mappings from r to s are implemented via table lookups. For an 8-

bit environment, a lookup table containing the values of T will have 256 entries. As an 

introduction to gray-level transformations, consider Fig. 1.1, which  shows three basic types of 

functions used frequently    for image enhancement: linear (negative and identity 

transformations), logarithmic (log and inverse-log transformations), and power-law (nth power 

and nth root transformations).The  identity function is the trivial case in which output intensities 

are identical to input intensities. It    is included in the graph only for completeness. 

 

Image Negatives: 

 

The negative of an image with gray levels in the range [0, L-1] is obtained by using the 

negative transformation shown in Fig., which is given by the expression 

s = L - 1 - r. 

 

Reversing the intensity levels of an image in this manner produces the equivalent of a 

photographic negative. This type of processing is particularly suited for enhancing white or 

gray detail embedded in dark regions of an image, especially when the black areas are dominant 

in  size. 
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Fig.  Some basic gray-level transformation functions used for image  enhancement 

 

 

Log Transformations: 

 

The general form of the log transformation shown in Fig.1.1 is 

 

 

where c is a constant, and it is assumed that r ≥ 0.The shape of the log curve in Fig. 1.1 

shows    that this transformation maps a narrow range of low gray-level values in the input 

image into a wider range of output levels. The opposite is true of higher values of input levels. 

We would use a transformation of this type to expand the values of dark pixels in an image 

while compressing the higher-level values. The opposite is true of the inverse log 

transformation. 

 

Any curve having the general shape of the log functions shown in Fig. 1.1 would 

accomplish this spreading/compressing of gray levels in an image. In fact, the power-law 

transformations discussed in the next section are much more versatile for this purpose than the 
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log transformation. However, the log function has the important characteristic that it 

compresses the dynamic range of images with large variations in pixel values. A classic 

illustration of an application in which pixel values have a large dynamic range is the Fourier 

spectrum. At the moment, we are concerned only with the image characteristics of spectra. It 

is not unusual to encounter spectrum values that range from 0 to or higher. While processing 

numbers such as these presents no problems for a computer, image display systems generally 

will not be able to reproduce faithfully such a wide range of intensity values. The net effect is 

that a significant degree of detail will be lost in the display of a typical Fourier spectrum. 

 

 

Power-Law Transformations: 

 

 

Power-law transformations have the basic form 

 

 

where  c and g are positive constants. Sometimes Eq. is written as    

 

to account for an offset (that is, a measurable output when the input is zero).However, offsets 

typically are an issue of display calibration and as a result they are normally ignored in Eq. 

Plots  of s versus r for various values of g are shown in Fig.   

As in the case of the  log  transformation, power-law curves with fractional values of g 

map a narrow range of dark input values into a wider range of output values,with the opposite 

being true for high-er values of input levels. Unlike the log function, however, we notice here 

a family of  possible  transformation curves obtained simply by varying γ.  

 

As expected, we see in Fig. that curves generated with values of g>1 have exactly the 

opposite effect as those generated with values of g<1. Finally, we note that Eq. reduces to the 

identity transformation when c = γ = 1. A variety of devices used for image capture, printing, 

and display respond according to a power law. 

By convention, the exponent in the power-law equation is referred to as gamma. The proces 

used to correct this power-law response phenomena is called gamma correction.  

 

For example, cathode  ray  tube (CRT) devices have an intensity-to-voltage response 

that is a power function, with exponents varying from approximately 1.8 to 2.5.With reference 

to the curve for g=2.5 in Fig. we see   that such display systems would tend to produce images 

that are darker than  intended. 
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Fig. Plots of the equation   for various values of     (c=1 in all cases). 

 

Piecewise-Linear Transformation Functions: 

 

The principal advantage of piecewise linear functions over the types of functions we 

have discussed above is that the form of piecewise functions can be arbitrarily complex. In fact, 

as we will see shortly, a practical implementation of some important transformations can be 

formulated only as piecewise functions. The principal disadvantage of piecewise functions is 

that their specification requires considerably more user input. 

Contrast stretching: 

 

One of the simplest piecewise linear functions is a contrast-stretching 

transformation. Low- contrast images can result from poor illumination, lack of dynamic 

range in the imaging sensor,   or even wrong setting of a lens aperture during image 

acquisition.The idea behind contrast stretching is to increase the dynamic range of the gray 

levels in the image being  processed. 

Figure 1.3 (a) shows a typical transformation used for contrast  stretching. 

 

The locations of points (r1 , s1) and (r2 , s2) control the shape of the  transformation 
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Fig. Contrast Stretching (a) Form of Transformation function (b) A low-contrast image 

(c) Result of contrast stretching (d) Result of thresholding. 

 

function. If r1=s1 and r2=s2, the transformation is a linear function that produces no changes 

in gray levels. If r1=r2,s1=0 and s2=L-1, the transformation becomes a thresholding 

function that creates a binary image, as illustrated in Fig. (b). Intermediate values of (r1 , 

s1) and (r2 , s2) produce various degrees of spread in the gray levels of the output image, 

thus affecting its  contrast. In general, r1 ≤ r2 and s1 ≤ s2 is assumed so that the function is 

single valued and monotonically increasing. This condition preserves the order of gray 

levels, thus preventing the creation of intensity artifacts in the processed image. 

Figure (b) shows an 8-bit image with low contrast. Fig. (c) shows the result of 

contrast stretching, obtained by setting (r1 , s1) = (rmin , 0) and (r2 , s2) = (rmax , L-1)  

where rmin  and  rmax  denote the minimum and maximum gray levels in the image, 

respectively. Thus, the transformation function stretched the levels linearly from their 

original range to the full range [0, L-1]. Finally, Fig. (d) shows the result of using the 

thresholding function defined previously, with r1 = r2 = m, the mean gray level in the image. 

The original image on which these results are based is a scanning electron microscope image 

of pollen, magnified approximately 700 times. 
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Gray-level slicing: 

 

Highlighting a specific range of gray levels in an image often is desired. 

Applications include enhancing features such as masses of water in satellite imagery and 

enhancing flaws in X-ray images. There are several ways of doing level slicing, but most of 

them are variations of two basic themes. One approach is to display a high value for all gray 

levels in the range of interest   and a low value for all other gray levels. This transformation, 

shown in Fig.  (a), produces a binary image. The second approach, based on the 

transformation shown in Fig.  (b), brightens the desired range of gray levels but preserves 

the background and gray-level tonalities in the image. Figure (c) shows a gray-scale image, 

and Fig. (d) shows the result of using the transformation in Fig. (a).Variations of the two 

transformations shown in Fig. are easy to formulate. 

 
 

Fig. (a) This transformation highlights range [A, B] of gray levels and reduce all others   to 

a constant level (b) This transformation highlights range [A, B] but preserves all other levels 

(c) An image (d) Result of using the transformation in  (a). 

Bit-plane slicing: 

 

Instead of highlighting gray-level ranges, highlighting the contributionmade to total 

image appearance by specific bits might be desired. Suppose that each pixel in an image is 

represented  by 8 bits. Imagine that the image is composed of eight 1-bit planes, ranging 

from bit-plane 0 for  the least significant bit to bit plane 7 for the most significant bit. In 

terms of 8-bit bytes, plane 0 
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contains all the lowest order bits in the bytes comprising the pixels in the image and plane 

7 contains all the high-order bits.Figure  illustrates these ideas, and Fig.  shows the various   

bit planes for the image shown in Fig. . Note that the higher-order bits (especially the top     

four) contain themajority of the visually significant data.The other bit planes contribute 

tomore subtle details in the image. Separating a digital image into its bit planes is useful for 

analyzing    the relative importance played by each bit of the image, a process that aids in 

determining the adequacy of the number of bits used to quantize each pixel. 

 

 

Fig.Bit-plane representation of an 8-bit image. 

 

In terms of bit-plane extraction for an 8-bit image, it is not difficult to show that the 

(binary)  image for bit-plane 7 can be obtained by processing the input image with a 

thresholding gray-  level transformation function that (1) maps all levels in the image 

between 0 and 127 to one level (for example, 0); and (2) maps all levels between 129 and 

255 to another (for example,  255). 

 

 

 

 

 

 

 

 

 

Fig.An 8-bit fractal image 
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Fig. The eight bit planes of the image in Fig.. The number at the bottom, right of each 

image identifies the bit plane. 

 

Objective of image enhancement, spatial domain, point processing. 

 

The term spatial domain refers to the aggregate of pixels composing an image. Spatial 

domain methods are procedures that operate directly on these pixels. Spatial domain processes 

will be denoted by the expression 

 

 

where f(x, y) is the input image, g(x, y) is the processed image, and T is an operator on 

f, defined over some neighborhood of (x, y). In addition,T can operate on a set of input images, 

such as performing the pixel-by-pixel sum of K images for noise  reduction. 

The principal approach in defining a neighborhood about a point (x, y) is to use a square or 
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rectangular subimage area centered at (x, y), as Fig. shows. The center of the subimage is 

moved from pixel to pixel starting, say, at the top left corner. The operator T is applied at each 

location (x, y) to yield the output, g, at that location.The process utilizes only the pixels in the   

area of the image spanned by the neighborhood. 

 

 

 

 

Fig. A 3*3 neighborhood about a point (x, y) in an  image. 

 

Although other neighborhood shapes, such as approximations to a circle, sometimes are 

used, square and rectangular arrays are by far the most predominant because of their ease of 

implementation. The simplest form of T is when the neighborhood is of size 1*1 (that is, a 

single pixel). In this case, g depends only on the value of f at (x, y), and T becomes a gray-

level (also called an intensity or mapping) transformation function of the  form 

 

where, for simplicity in notation, r and s are variables denoting, respectively,  the gray  

level of  f(x, y) and g(x, y) at any point (x, y). For example, if T(r) has the form shown in Fig. 

2.2(a), the effect of this transformation would be to produce an image of higher contrast than 

the original by darkening the levels below m and brightening the levels above m in the original 

image. In this technique, known as contrast stretching, the values of r below m are compressed 

by the transformation function into a narrow range of s, toward black.The opposite effect takes 

place for values of r above m. In the limiting case shown in Fig. (b), T(r) produces a two-level 

(binary) image. A mapping of this form is called a thresholding function. Some fairly simple,  

yet  powerful, processing approaches can be formulated with gray-level transformations. 

Because enhancement at any point in an image depends only on the gray level at that point, 
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techniques in this category often are referred to as point processing. 

Fig. Gray level transformation functions for contrast  enhancement. 

Larger neighborhoods allow considerably more flexibility. The general approach is to 

use a function of the values of f in a predefined neighborhood of (x, y) to determine the value 

of g at   (x, y).One of the principal approaches in this formulation is based on the use of so-

called masks (also referred to as filters, kernels, templates, or windows). Basically, a mask is 

a small (say,    3*3) 2-D array, such as the one shown in Fig., in which the values of the mask 

coefficients determine the nature of the process, such as image sharpening. 

 

Histogram Processing: 

 

The histogram of a digital image with gray levels in the range [0, L-1] is a discrete function   

h(rk)= (nk), where rk is the kth gray level and nk is the number of pixels in the image having 

gray level rk. It is common practice to normalize a histogram by dividing each of its values by 

the total number of pixels in the image, denoted by n. Thus, a normalized histogram is given 

by 

 

 

For k=0,1,…… .,L-1. Loosely speaking, p(rk) gives an estimate of the probability of 

occurrence    of gray level rk. Note that the sum of all components of a normalized histogram 

is equal to 1 . 

Histograms are the basis for numerous spatial domain processing techniques. Histogram 

manipulation can be used effectively for image enhancement. Histograms are simple to 

calculate in software and also lend themselves to economic hardware implementations, thus 

making them    a popular tool for real-time image processing. 

As an introduction to the role of histogram processing in image enhancement, consider Fig. , 

which is the pollen image shown in four basic gray-level characteristics: dark, light, low 

contrast, and high contrast. The right side of the figure shows the histograms corresponding  to  

these images. The horizontal axis of each histogram plot corresponds to gray level values,  rk. 
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The vertical axis corresponds to values of h(rk) = nk or p(rk) = nk/n if the values are 

normalized. Thus, as indicated previously, these histogram plots are simply plots of h(rk) = nk 

versus rk  or p(rk) = nk/n versus rk. 

 

 

 
 

Fig. Four basic image types: dark, light, low contrast, high contrast, and their corresponding 

histograms. 

We note in the dark image that the components of the histogram are concentrated on 

the  low (dark) side of the gray scale. Similarly, the components of the histogram of the bright 

image are biased toward the high side of the gray scale.An image with  low contrast has a 

histogram that  will be narrow and will be centered toward the  middle of the gray  scale. For a 

monochrome  image this implies a dull, washed-out gray look. Finally, we see that the 

components of the histogram in the high-contrast image cover a broad range of the gray scale 

and, further, that the distribution of pixels is not too far from uniform, with very few vertical 

lines being much higher than the others. Intuitively, it is reasonable to conclude that an image 

whose pixels tend  to occupy the entire range of possible gray levels and, in addition, tend to 

be distributed uniformly,will have an appearance of high contrast and will exhibit a large 

variety of gray tones. The net effect will be an image that shows a great deal of gray-level 

detail and has high dynamic range. It will be shown shortly that it is possible to develop a 
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transformation function that can automatically achieve this effect, based only on information 

available in the histogram of the input image. 

 

Histogram Equalization: 

 

Consider for a moment continuous functions, and let the variable r represent the gray levels of    

the image to be enhanced. We assume that r has been normalized to the interval [0, 1], with 

r=0 representing black and r=1 representing white. Later, we consider a discrete formulation 

and allow pixel values to be in the interval [0, L-1]. For any r satisfying the aforementioned 

conditions, we focus attention on transformations of the form 

 

 

That produce a level s for every pixel value r in the original image. For reasons that will become 

obvious shortly, we assume that the transformation function T(r) satisfies the following 

conditions: 

(a) T(r) is single-valued and monotonically increasing in the interval 0 ≤ r ≤ 1; and (b) 

0 ≤ T(r) ≤ 1 for 0 ≤ r ≤ 1. 

The requirement in (a) that T(r) be single valued is needed to guarantee that the inverse 

transformation will exist, and the monotonicity condition preserves the increasing order from 

black to white in the output image. A transformation function that is not monotonically 

increasing could result in at least a section of the intensity range being inverted, thus producing 

some inverted gray levels in the output image. Finally, condition (b) guarantees that the output 

gray levels will be in the same range as the input levels. Figure  gives an example of a 

transformation function that satisfies these two conditions. The inverse transformation from s 

back to r is denoted 

It can be shown by example that even if T(r) satisfies conditions (a) and (b), it is possible 

that the corresponding inverse T
-1 

(s) may fail to be single valued. 

 

 
 

Fig. A gray-level transformation function that is both single valued and monotonically 
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increasing. 

The gray levels in an image may be viewed as random variables in the interval [0, 

1].One of the most fundamental descriptors of a random variable is its probability density 

function (PDF).Let pr(r) and ps(s) denote the probability density functions of random variables 

r and s, respectively, where the subscripts on p are used to denote that pr and ps are different 

functions. A basic result from an elementary probability theory is that, if pr(r) and T(r) are 

known and T
-1       

(s) 

Satisfies condition (a), then the probability density function ps(s) of the transformed variable s 

can be obtained using a rather simple formula: 

Thus, the probability density function of the transformed variable, s, is determined by 

the gray- level PDF of the input image and by the chosen transformation function. A 

transformation function of particular importance in image processing has the form 

Where w is a dummy variable of integration. The right side of Eq. above is recognized 

as the cumulative distribution function (CDF) of random variable r. Since probability density 

functions are always positive, and recalling that the integral of a function is the area under the 

function, it follows that this transformation function is single valued and monotonically 

increasing, and, therefore, satisfies condition (a). Similarly, the integral of a probability density 

function for variables in the range [0, 1] also is in the range [0, 1], so condition (b) is satisfied 

as well. 

 

Given transformation function T(r), we find ps(s) by applying Eq. We know from basic 

calculus (Leibniz’s rule) that the derivative of a definite integral with respect to its upper limit 

is simply the integrand evaluated at that limit. In other words, 

Substituting this result for dr/ds, and keeping in mind that all probability values are 

positive,   yields 
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Because ps(s) is a probability density function, it follows that it must be zero outside 

the interval [0, 1] in this case because its integral over all values of s must equal 1.We recognize 

the form of ps(s) as a uniform probability density function. Simply stated, we have 

demonstrated that performing the transformation function yields a random variable s 

characterized by a uniform probability density function. It is important to note from Eq. 

discussed above that T(r) depends   on pr(r), but, as indicated by Eq. after it, the resulting ps(s) 

always is uniform, independent of the form of pr(r). For discrete values we deal with 

probabilities and  summations  instead  of probability density functions and integrals. The 

probability of occurrence of gray level r in an image is approximated by 

 

where, as noted at the beginning of this section, n is the total number of pixels in the 

image, nk is the number of pixels that have gray level rk, and L is the total number of possible 

gray levels in   the image.The discrete version of the transformation function given in Eq.  is 

 

Thus, a processed (output) image is obtained by mapping each pixel with level rk in the 

input image into a corresponding pixel with level sk in the output image. As indicated earlier, 

a plot of   pr (rk) versus rk is called a histogram. The transformation (mapping) is called 

histogram equalization or histogram linearization. It is not difficult to show that the 

transformation in Eq. satisfies conditions (a) and (b) stated previously. Unlike its continuos 

counterpart, it cannot be proved in general that this discrete transformation will produce the 

discrete equivalent of  a uniform probability density function, which would be a uniform  

histogram. 
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Fig. (a) Images from Fig. (b) Results of histogram equalization. (c) Corresponding histograms. 

The inverse transformation from s back to r is denoted by 

 

Histogram Matching (Specification): 

 

Histogram equalization automatically determines a transformation function that seeks 

to produce an output image that has a uniform histogram.When automatic enhancement is 

desired, this is a good approach because the results from this technique are predictable and the 

method is simple    to implement. In particular, it is useful sometimes to be able to specify the 

shape  of  the  histogram that we wish the processed image to have.The method used to generate 

a processed image that has a specified histogram is called histogram matching or histogram  

specification. 

Development of the method: 
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Let us return for a moment to continuous gray levels r and z (considered continuous 

random variables), and let pr(r) and pz(z) denote their corresponding continuos probability 

density functions. In this notation, r and z denote the gray levels of the input and output 

(processed) images, respectively.We can estimate pr(r) from the given input image, while pz(z)  

is  the  specified probability density function that we wish the output image to  have. 

 

Let s be a random variable with the property 

 

 

where w is a dummy variable of integration.We recognize this expression  as  the  

continuos version of histogram equalization. Suppose next that we define a random variable z 

with the property 

 

 

 

 

where t is a dummy variable of integration. It then follows from these two equations 

that  G(z)=T(r) and, therefore, that z must satisfy the condition 

 

 

 

 

The transformation T(r) can be obtained once pr(r) has been estimated from the input 

image. Similarly, the transformation function G(z) can be  obtained because pz(z)  is  given.  

Assuming that G
-1 

exists and that it satisfies conditions (a) and (b) in the histogram 

equalization process, 

The above three equations show that an image with a specified probability density 

function can be obtained from an input image by using the following procedure: 

 

Obtain the transformation function T(r). 

 

To obtain the transformation function G(z). 

 

Obtain the inverse transformation function G
-1 

Obtain the output image by applying above Eq. to all the pixels in the input image. 
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The result of this procedure will be an image whose gray levels, z, have the specified 

probability density function pz(z). Although the procedure just described is straightforward in 

principle, it’s seldom possible in practice to obtain analytical expressions for T(r) and for G
-1.  

 

Fortunately, this problem is simplified considerably in the case of discrete values.The 

price we pay is the same as  in histogram equalization,where only an approximation to the 

desired histogram is achievable. In spite of this, however, some very useful results can be 

obtained even with crude  approximations. 

 

where n is the total number of pixels in the image, nj is the number of pixels with gray 

level rj,   and L is the number of discrete gray levels. Similarly, the discrete formulation  is 

obtained from  the given histogram pz (zi), i=0, 1, 2,……, L-1, and has the form 

 

 
As in the continuous case, we are seeking values of z that satisfy this equation.The 

variable vk was added here for clarity in the discussion that follows. Finally, the discrete 

version of  the above  Eqn. is given by 

 

 

Or 

 

Implementation: 

 

We start by noting the following: (1) Each set of gray levels {rj} , {sj}, and {zj}, j=0, 

1, 2, p , L-   1, is a one-dimensional array of dimension L X 1. (2) All mappings from r to s and 

from s to z    are simple table lookups between a given pixel value and these arrays. (3) Each 

of the elements   of these arrays, for example, sk, contains two important pieces of information: 

The subscript k denotes the location of the element in the array, and s denotes the value at that 

location. (4) We need to be concerned only with integer pixel values. For example, in the case 

of an 8-bit image, L=256 and the elements of each of the arrays just mentioned are integers 

between 0 and 255.This implies that we now work with gray level values in the interval [0, L-

1] instead of the normalized interval [0, 1] that we used before to simplify the development of 
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histogram processing  techniques. 

In order to see how histogram matching actually can be implemented, consider  Fig.  (a),  

ignoring for a moment the connection shown between  this figure and  Fig. (c). Figure (a)  

shows a hypothetical discrete transformation function s=T(r) obtained from a given image. The 

first gray level in the image, r1 , maps to s1 ; the second gray level, r2 , maps to s2 ; the kth 

level rk maps to sk; and so on (the important point here is the ordered correspondence between 

these values). Each value sj in the array is precomputed, so the process of mapping simply uses 

the actual value of a pixel as an index in an array to determine the corresponding value of s.This 

process is particularly easy because we are dealing with integers. For example, the s mapping 

for an 8-bit pixel with value 127 would be found in the 128th position in array {sj} (recall that 

we start at 0) out of the possible 256 positions. If we stopped here and mapped the value of 

each    pixel of an input image by the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (a) Graphical interpretation of mapping from rk to sk via T(r). (b) Mapping of zq to     its 

corresponding value vq via G(z)  (c) Inverse mapping from sk to its corresponding value   of 

zk. 

 

Method just described, the output would be a histogram-equalized image. In order to 

implement histogram matching we have to go one step further. Figure (b) is a hypothetical 

transformation function G obtained from a given histogram pz(z). For any zq , this 

transformation function  yields a corresponding value vq. This mapping is shown by the arrows 

in Fig. 5(b). Conversely, given  any value vq, we would find the corresponding value zq from 
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G
-1

. In terms of the figure, all this means graphically is that we would reverse the direction of 

the arrows to map vq into its corresponding zq. However, we know from the definition   that 

v=s for corresponding   subscripts, 

so we can use exactly this process to find the zk corresponding to any value sk that we 

computed previously from the equation sk = T(rk) .This idea is shown in Fig.(c). 

 

Since we really do not have the z’s (recall that finding these values is precisely the 

objective of histogram matching),we must resort to some sort of iterative scheme to find z from 

s.The fact    that we are dealing with integers makes this a particularly simple process. Basically, 

because vk = sk, we have that the z’s for which we are looking must satisfy the equation 

G(zk)=sk, or (G(zk)- sk)=0. Thus, all we have to do to find the value of zk corresponding to sk 

is to iterate on values of    z such that this equation is satisfied for k=0,1,2,…...., L-1. We do 

not have to find the inverse of  G because we are going to iterate on z. Since we are dealing 

with integers, the closest we can get to  satisfying  the  equation (G(zk)-sk)=0  is  to  let  zk=  

 for  each  value  of  k,  where     is the smallest integer in the interval [0, L-1] such that 

 

 

Given a value sk, all this means conceptually in terms of Fig. (c) is that we would start 

with and increase it in integer steps until Eq   is satisfied, at which point we let repeating this 

process for    all values of k would yield all the required mappings from s to z, which constitutes 

the implementation of Eq. In practice, we would not have to start with each time because the 

values  of sk are known to increase monotonically. Thus, for k=k+1, we would start with  

 and increment in integer values from there. 

 

Local Enhancement: 

 

The histogram processing methods discussed in the previous two sections are global, in 

the sense that pixels are modified by a transformation function based on the gray-level content 

of an entire image. Although this global approach is suitable for overall enhancement, there are 

cases in   which it is necessary to enhance details over small areas in an image. The number of 

pixels in these areas may have negligible influence on the computation of a global 

transformation whose shape does not necessarily guarantee the desired local enhancement. The 

solution is to devise transformation functions based on the gray-level distribution—or other 

properties—in the neighborhood of every pixel in the image. 

The histogram processing techniques are easily adaptable to local enhancement.The 

procedure is to define  a square or rectangular neighborhood  and  move  the center of this area 

from pixel to pixel. At each location, the histogram of the points in the neighborhood is 

computed and either a histogram equalization or histogram specification transformation 

function is obtained. This function is finally used to map the gray level of the pixel centered 

in the neighborhood. The center of the neighborhood region is then moved to an adjacent pixel 

location and the procedure is repeated. Since only one new row or column of the neighborhood 
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changes during a pixel-to-pixel translation of the region, updating the histogram obtained in 

the previous location with the new data introduced at each motion step is possible.   

This approach has obvious advantages over repeatedly computing the histogram over 

all pixels in the neighborhood region each time the region is moved one pixel location. Another 

approach used some times to reduce computation is to utilize no overlapping regions, but this 

method usually produces an undesirable checkerboard effect. 

 

 

 Fundamentals of Spatial Filtering: 

 

Some neighborhood operations work with the values of the image pixels in the 

neighborhood and the corresponding values of a sub image that has the same dimensions as the 

neighborhood. The sub image is called a filter, mask, kernel, template, or window, with the 

first three terms being the most prevalent terminology. The values in a filter sub image are 

referred to as coefficients, rather than pixels. The concept of filtering has its roots in the use of 

the Fourier transform for signal processing in the so-called frequency domain. We use the term 

spatial filtering to differentiate   this type of process from the more traditional frequency 

domain filtering. 

The mechanics of spatial filtering are illustrated in Fig. The process consists simply  of 

moving the filter mask from point to point in an image. At each point (x, y), the response of 

the filter at that point is calculated using a predefined relationship.   The response is given by 

a sum   of products of the filter coefficients and the corresponding image pixels in the area 

spanned by   the filter mask. For the 3 x 3 mask  shown  in Fig. , the result (or response), R, of 

linear  filtering with the filter mask at a point (x, y) in the image  is 

which we see is the sum of products of the mask coefficients with the corresponding 

pixels directly under the mask. Note in particular that the coefficient w(0, 0) coincides 

with image value f(x, y), indicating that the mask is centered at (x, y) when the computation 

of the sum of products takes place. For a mask of size m x n,we assume that m=2a+1 and 

n=2b+1,where a and   b are nonnegative integers. 
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Fig. The mechanics of spatial filtering. The magnified drawing  shows a 3X3 mask and  the 

image section directly under it; the image section is shown displaced out from under the mask 

for ease of readability. 

In general, linear filtering of an image f of size M x N with a filter mask of size m x n 

is given by the expression: 

 
where, from the previous paragraph, a=(m-1)/2 and b=(n-1)/2. To generate a complete 

filtered image this equation must be applied for x=0,1,2,……, M-1 and y=0,1,2,……, N-1. In 

this way,   we are assured that the mask processes all pixels in the image. It is easily verified 

when m=n=3 that this expression reduces to the example given in the previous  paragraph. 

The process of linear filtering is similar to a frequency domain concept called convolution. For 

this reason, linear spatial filtering often is referred to as “convolving a mask with an image.” 

Similarly, filter masks are sometimes called convolution masks. The term convolution kernel    
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also is in common use. When interest lies on the response, R, of an m x n mask at any point     

(x,y), and not on the mechanics of implementing mask convolution, it is common practice to 

simplify the notation by using the following expression: 

where the w’s are mask coefficients, the z’s are the values of the image graylevels 

corresponding  to those coefficients, and mn is the total number of coefficients in the mask. 

For the 3 x 3 general mask shown in Fig. the response at any point (x, y) in the image is given  

by 

 

 

Fig. Another representation of a general 3 x 3 spatial filter mask. 

An important consideration in implementing neighborhood operations for spatial 

filtering is the issue of what happens when the center of the filter approaches the border of the 

image. Consider for simplicity a square mask of size n x n.At least one edge of such a mask 

will coincide with the border of the image when the center of the mask is at a distance of (n-

1)/2 pixels away from the border of the image. If the center of the mask moves any closer to 

the border, one or more rows   or columns of the mask will be located outside the image plane. 

There are several ways to handle this situation. The simplest is to limit the excursions of the 

center of the mask to be at a distance   no less than (n-1)/2 pixels from the border. The resulting 

filtered image will be smaller than the original, but all the pixels in the filtered imaged will 

have been processed with the full mask. If   the result is required to be the same size as the 

original, then the approach typically employed is   to filter all pixels only with the section of 

the mask that is fully contained in the image. With this approach, there will be bands of pixels 

near the border that will have been processed with a partial filter mask. Other approaches 

include “padding” the image by adding rows and columns of 0’s (or other constant gray level), 
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or padding by replicating rows or columns. The padding is then stripped off at the end of the 

process. 

This keeps the size of the filtered image the same as the original, but the values of the 

padding will have an effect near the edges that becomes more prevalent as the size of the mask 

increases. The only way to obtain a perfectly filtered result is to accept a  somewhat smaller  

filtered image by limiting the excursions of the center of the filter mask to a distance no less 

than (n-1)/2 pixels from the border of the original image. 

 

Smoothing Spatial Filters: 

 

Smoothing filters are used for blurring and for noise reduction. Blurring is used in 

preprocessing steps, such as removal of small details from an image prior to (large) object 

extraction, and bridging of small gaps in lines or curves. Noise reduction can be accomplished 

by blurring with a linear filter and also by non-linear filtering. 

Smoothing Linear Filters: 

 

The output (response) of a smoothing, linear spatial filter is simply the average of the 

pixels contained in the neighborhood of the filter mask. These filters sometimes are called 

averaging filters.  The idea behind smoothing filters is straightforward. By replacing the value 

of every pixel in an image by the average of the gray levels in the neighborhood defined by the 

filter mask, this process results in an image with reduced “sharp” transitions in gray levels. 

Because random    noise typically consists of sharp transitions in gray levels, the most obvious 

application of smoothing is noise reduction. However, edges (which almost always are 

desirable features of an image) also are characterized by sharp transitions in gray levels, so 

averaging filters have the undesirable side effect that they blur edges. Another application of 

this type of process includes the smoothing of false contours that result from using an 

insufficient number of gray l e v e l s . 

 

 

 

 

Fig.Two 3 x 3 smoothing (averaging) filter masks. The constant multiplier in front of each 

mask is equal to the sum of the values of its coefficients, as is required to compute an average. 
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A major use of averaging filters is in the reduction of “irrelevant” detail in an image. 

By “irrelevant “we mean pixel regions that are small with respect to the size of the filter  mask. 

Figure shows two 3 x 3 smoothing filters. Use of the first filter yields the standard average    of 

the pixels under the mask. This can best be seen by substituting the coefficients of the mask i n  

 

 

 

 

which is the average of the gray levels of the pixels in the 3 x 3 neighborhood defined 

by the mask.Note that, instead of being 1/9, the coefficients of the filter are all 1’s.The idea 

here is that   it is computationally more efficient to have coefficients valued 1. At the end of 

the filtering process the entire image is divided by 9. An m x n mask would have a normalizing 

constant    equal to 1/mn. 

A spatial averaging filter in which all coefficients are equal is sometimes called a box  filter. 

 

The second mask shown in Fig. is a little more interesting. This mask yields a so-called 

weighted average, terminology used to indicate that pixels  are  multiplied  by  different 

coefficients, thus giving more importance (weight) to some pixels at the expense of others. In 

the mask shown in Fig.  the pixel at  the center of the mask is multiplied by  a higher value  

than any other, thus giving this pixel more importance in the calculation of the average. The 

other pixels are inversely weighted as a function of their distance from the center of the mask. 

The diagonal terms are further away from the center than the orthogonal neighbors (by a factor 

of √2) and, thus, are weighed less than these immediate neighbors of the center pixel. The basic 

strategy behind weighing the center point the highest and then reducing the value of the 

coefficients as a function of increasing distance from the origin is simply an attempt to reduce 

blurring in the smoothing process. We could have picked other weights to accomplish the same 

general  objective. 

 

 

  However, the sum of all the coefficients in the mask of Fig.  is equal to 16, an attractive 

feature for computer implementation because it has an integer power of 2. In practice,    it is 

difficult in general to see differences between images smoothed by using either of the masks 

in Fig. or similar arrangements, because the area these masks span at any one location in an 

image is so small. 

The general implementation for filtering an M x N image with a weighted averaging filter of 

size  m x n (m and n odd) is given by the expression 
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Order-Statistics Filters: 

 

Order-statistics filters are nonlinear spatial filters whose response is based on ordering 

(ranking) the pixels contained in the image area encompassed by the filter, and then replacing 

the value of the center pixel with the value determined by the ranking result. The best-known 

example in this category is the median filter, which, as its name implies, replaces the value of 

a pixel by the median of the gray levels in the neighborhood of that pixel (the original value of 

the pixel is included in the computation of the median). Median filters are quite popular 

because, for certain types of random noise, they provide excellent noise-reduction capabilities, 

with considerably less blurring than linear smoothing filters of similar size. Median filters are 

particularly effective in   the presence of impulse noise, also called salt-and-pepper noise 

because of its appearance as   white and black dots superimposed on an image. 

The median, ε, of a set of values is such that half the values in the set are less than or 

equal to ε, and half are greater than or equal to ε. In order to perform median filtering at a point 

in an image, we first sort the values of the pixel in question and its neighbors, determine their 

median, and assign this value to that pixel. For example, in a 3 x 3 neighborhood the median is 

the 5th largest value, in a 5 x 5 neighborhood the 13th largest value, and so on. When several 

values in a neighborhood are the same, all equal values are grouped. For example, suppose that 

a 3 x 3 neighborhood has values (10, 20, 20, 20, 15, 20, 20, 25, 100). These values are sorted 

as (10, 15, 20, 20, 20, 20, 20, 25, 100), which results in a median of 20. Thus, the principal 

function of  median filters is to force points with distinct gray levels to be more like their 

neighbors. In fact, isolated clusters of pixels that are light or dark with respect to their 

neighbors, and whose area is less than n
2 / 

2 (one-half the filter area), are eliminated by an 

n x n median filter. In this case “eliminated” means forced to the median intensity of the 

neighbors. Larger clusters are affected considerably less. 

 

Sharpening filters Use of Second Derivatives for Enhancement–The  Laplacian: 

 

The approach basically consists of defining a discrete formulation of the second-order 

derivative and then constructing a filter mask based on that formulation. We are interested  in 

isotropic  filters, whose response is independent of the direction of the discontinuities in the 

image to     which the filter is applied. In other words, isotropic filters are rotation invariant, in 

the sense that rotating the image and then applying the filter gives the same result as applying 

the filter to the image first and then rotating the result. 

Development of the method: 

 

It can be shown (Rosenfeld and Kak [1982]) that the simplest isotropic derivative 

operator is the Laplacian, which, for a function (image) f(x, y) of two variables, is defined  as 

 

Because derivatives of any order are linear operations, the Laplacian is a linear operator. 
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In order  to be useful for digital image processing, this equation needs to be expressed in 

discrete form. There are several ways to define a digital Laplacian using neighborhoods. digital 

second.Taking into account that we now have two variables, we use the following notation for 

the partial second-order derivative in the x-direction: 

 

 

 
 

and, similarly in the y-direction, as 

 

 

The digital implementation of the two-dimensional Laplacian in Eq. is obtained by 

summing   these two components 

 

This equation can be implemented using the mask shown in Fig.(a), which gives an 

isotropic result for rotations in increments of 90°. 

The diagonal directions can be incorporated in the definition of the digital Laplacian by 

adding  two more terms to Eq., one for each of the two diagonal directions.The form of each 

new term is the same as either Eq. 

Fig.. (a) Filter mask used to implement the digital Laplacian (b) Mask used to  implement an 

extension of this equation that includes the diagonal neighbors. (c) and (d) Two other 

implementations of the Laplacian.  

But the coordinates are along the diagonals. Since each diagonal term also contains a –

2f(x, y) term, the total subtracted from the difference terms now would be –8f(x, y). The mask 

used to implement this new definition is shown in Fig.(b). This mask yields isotropic results 
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for increments of 45°. The other two masks shown in Fig. 11 also are used frequently in  

practice. 

They are based on a definition of the Laplacian that is the negative of the one we used 

here. As such, they yield equivalent results, but the difference in sign must be kept in mind 

when combining (by addition or subtraction) a Laplacian-filtered image with another  image. 

Because the Laplacian is a derivative operator, its use highlights gray-level discontinuities in 

an image and deemphasizes regions with slowly varying gray levels. This will tend  to  produce 

images that have grayish edge lines and other discontinuities, all superimposed on a dark, 

featureless background. Background features can be “recovered” while still preserving the 

sharpening effect of the Laplacian operation simply by adding the original and Laplacian 

images. As noted in the previous paragraph, it is important to keep in mind which definition of 

the Laplacian is used. If the definition used has a negative center coefficient, then we subtract,   

rather than add, the Laplacian image to obtain a sharpened result. Thus, the basic way in which 

we use  the Laplacian for image enhancement is as follows: 

 

 

 

Use of First Derivatives for Enhancement—The Gradient: 

 

First derivatives in image processing are implemented using the magnitude of the 

gradient. For a function f(x, y), the gradient of f at coordinates (x, y) is defined as the two-

dimensional column vector 

 

The magnitude of this vector is given by 

 

The components of the gradient vector itself are linear operators, but the magnitude of 

this vector obviously is not because of the squaring and square root operations. On the other 

hand, the    partial derivatives are not rotation invariant (isotropic), but the magnitude of the 
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gradient vector   is. Although it is not strictly correct, the magnitude of the gradient vector often 

is referred to as   the gradient. 

 

The computational burden of implementing over an entire image is not trivial, and it is 

common practice to approximate the magnitude of the gradient by using absolute values instead 

of squares and square roots: 

 

This equation is simpler to compute and it still preserves relative changes in gray levels, 

but the isotropic feature property is lost in general. However, as in the case of  the  Laplacian,  

the isotropic properties of the digital gradient defined in the following paragraph are preserved 

only for a limited number of rotational increments that depend on the masks used to 

approximate the derivatives. As it turns out, the most popular masks used to approximate the 

gradient give the  same result only for vertical and horizontal edges and thus the isotropic 

properties of the gradient are preserved only for multiples of 90°. 

As in the case of the Laplacian, we now define digital approximations to the preceding 

equations, and from there formulate the appropriate filter masks. In order to simplify the 

discussion that follows, we will use the notation in Fig. 11.2 (a) to denote image points in a 3 

x 3 region. For example, the center point, z5 , denotes f(x, y), z1 denotes f(x-  1, y-1), and so 

on. The simplest approximations to a first-order derivative that satisfy the conditions stated in 

that section are Gx = (z8 –z5) and Gy = (z6 – z5) . Two other definitions  proposed by Roberts 

[1965] in the early development of digital image processing use cross differences: 

 

we compute the gradient as 

 

If we use absolute values, then substituting the quantities in the equations gives us the 

following approximation to the gradient: 

 

This equation can be implemented with the two masks shown in Figs.  (b) and(c). These 

masks are referred to as the Roberts cross-gradient operators. Masks of even size are awkward 

to implement. The smallest filter mask in which we are interested is of size 3 x 3.An 

approximation using absolute values, still at point z5 , but using a 3*3 mask,  is 

 

The difference between the third and first rows of the 3 x 3 image region 

 
 

 
 

 
 

 
 

 
 

ECE/LIET C402 DIP NOTES Sudheer Asst Prof ECE Dept



approximates the derivative in the x-direction, and the difference between the third and 

first columns approximates the derivative in the y-direction. The masks shown in Figs. 

(d) and (e), called the Sobel operators. The idea behind using a weight value of 2 is to 

achieve some smoothing by giving more importance to the center point. Note that the 

coefficients in all the masks shown in Fig. 11.2 sum to 0, indicating that they would 

give a response of 0 in an area of constant gray level,    as expected of a derivative 

operator. 

Fig. A 3 x 3 region of an image (the z’s are gray-level values) and masks  used to  

compute the gradient at point labeled z5 . All masks coefficients sum to zero, as 

expected of    a derivative operator. 

 

Fourier's contribution in this particular field states that any function that 

periodically repeats itself can be expressed as the sum of sines and/or cosines of 

different frequencies, each multiplied by a different coefficient (we now call this sum a 

Fourier series). It does not matter how complicated the function is; as long as it is 

periodic and meets some mild mathematical conditions, it can be represented by such a 

sum. 

Even functions that are not periodic (but whose area under the curve is finite) 

can be expressed as the integral of sines and/or cosines multiplied by a weighing 

function. The formulation in this case is the Fourier transform, and its utility is even 

greater than the Fourier series in most practical problems. Both representations share 

the important characteristic that a function, expressed in either a Fourier series or 

transform, can be reconstructed (recovered) completely via an inverse process, with no 

loss of information. This is one of the most important characteristics of these 

representations because they allow us to work in the "Fourier domain" and then return 

to the original domain of the function without losing any information. 

The application of Fourier initial ideas was in the field of heat diffusion, where 

they allowed the formulation of differential equations representing heat flow in such a 

way that solutions could be obtained for the first time. During the past century, and 

especially in the past 50 years, entire industries and academic disciplines have 

flourished as a result of Fourier's ideas. The advent of digital computation and the 

"discovery" of a fast Fourier transform (FFT) algorithm in the late 1950s (more about 

this later) revolutionized the field of signal processing. These two core technologies 

allowed for the first time practical processing and meaningful interpretation of a host of 

signals of exceptional human and industrial importance, from medical monitors and 

scanners to modern electronic communications. 
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Combining Spatial Enhancement Methods 

In this section we illustrate by means of an example how to combine several of the 

approaches developed in this chapter to address a difficult enhancement task. 

The image shown in Fig. (a) is a nuclear whole body bone scan, used to detect diseases 

such as bone infection and tumors. Our objective is to enhance this image by sharpening 

it and by bringing out more of the skeletal detail. The narrow dynamic range of the gray 

levels and high noise content make this image difficult to enhance. The strategy we will 

follow is to utilize the Laplacian to highlight fine detail, and the gradient to enhance 

prominent edges. For reasons that will be explained shortly, a smoothed version of the 

gradient image will be used to mask the Laplacian image. Finally, we will attempt to 

increase the dynamic range of the gray levels by using a gray-level transformation. 

Figure (b) shows the Laplacian of the original image, obtained using the mask in Fig. 

(d). This image was scaled (for display only) using the same technique as in Fig.  We 

can obtain a sharpened image at this point 

 

a b 

c d 

FIGURE  

Image of whole body bone scan. 

Laplacian of (a). 

(c) Sharpened image  

 obtained by adding (a) and (b). 

(d) Sobel of (a). 
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FIGURE  

(Continued) 

(e) Sobel image 

smoothed  

With a 5*5 averaging 

filter. 

 (f) Mask image 

formed  

By the product of (c) 

and (e). 

 (g) Sharpened image 

obtained  

 By the sum of (a) and 

(f). 

 (h) Final result 

obtained by applying 

 A power-law 

transformation to (g). 

Compare (g) and (h) 

with (a). 

 

Simply by adding Figs. (a) and (b), which are an implementation of the 

second line in Eq. (3.7-5) (we used a mask with a positive center coefficient). 

Just by looking at the noise level in (b), we would expect a rather noisy 

sharpened image if we added Figs. (a) and (b), a fact that is confirmed by the 

result shown in Fig. (c). One way that comes immediately to mind to re- duce 

the noise is to use a median filter. However, median filtering is a non- linear 

process capable of removing image features. This is unacceptable in medical 

image processing. 

An alternate approach is to use a mask formed from a smoothed version 

of the gradient of the original image. The motivation behind this is 

straightforward and is based on the properties of first- and second-order 

derivatives. The Laplacian, being a second-order derivative operator, has the 

definite advantage that it is superior in enhancing fine detail. However, this 

causes it to produce noisier results than the gradient. This noise is most 

objectionable in smooth areas, where it tends to be more visible. The gradient 

has a stronger response in areas of significant gray-level transitions (gray-level 

ramps and steps) than does the Laplacian. The response of the gradient to noise 

and fine detail is lower than the Laplacian’s and can be lowered further by 

smoothing the gradient with an averaging filter. The idea, then, is to smooth the 

gradient and multiply it by the Laplacian image. In this context, we may view 

the smoothed gradient as a mask image. The product will preserve details in the 

e f 

g h 
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strong areas while reducing noise in the relatively flat areas. This process can be 

viewed roughly as combining the best features of the Laplacian and the gradient.  

The result is added to the original to obtain a final sharpened image, and 

could even be used in boost filtering. Figure (d) shows the Sobel gradient of the 

original image, computed. Components Gx and Gy were obtained using the 

masks in Figs. respectively. Edges are much more dominant in this image than in 

the Laplacian image. The smoothed gradient image shown in Fig. (e) was 

obtained by using an averaging filter of size 5*5. The two gradient images were 

scaled for display in the same manner as the two Laplacian images. Because the 

smallest possible value of a gradient image is 0, the background is black in the 

scaled gradient images, rather than gray as in the scaled Laplacian. The fact that 

Figs. (d) and are much brighter than Fig. (b) is again evidence that the gradient of 

an image with significant edge content has values that are higher in general than 

in a Laplacian image. 

  The product of the Laplacian and smoothed-gradient image is shown in 

Fig. (f). Note the dominance of the strong edges and the relative lack of visible 

noise, which is the key objective behind masking the Laplacian with a 

smoothed gradient image. Adding the product image to the original resulted in 

the sharpened image shown in Fig. (g). The significant increase in sharp- ness 

of detail in this image over the original is evident in most parts of the image, 

including the ribs, spinal chord, pelvis, and skull. This type of improvement would 

not have been possible by using the Laplacian or gradient alone. 
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Filtering in Frequency domain:  

Preliminary concepts:  

Basics of filtering in the frequency domain 

Filtering in the frequency domain is straightforward. It consists of the following 

steps: 

1. Multiply the input image by (-1) x+y to center the transform, as indicated in Eq. 

2. Compute F(u, v), the DFT of the image from (1). 

3. Multiply F (u, v) by a filter function H (u, v). 

4. Compute the inverse DFT of the result in (3). 

5. Obtain the real part of the result in (4). 

6. Multiply the result in (5) by (-l)x+y. 

The reason that H(u, v) is called a filter because it suppresses certain frequencies in the 

transform 

while leaving others unchanged. The analogy from everyday life is a screen filter that 

passes certain objects and suppresses others, based strictly on their size. 

In equation form, let f (x, y) represent the input image in Step 1 and F(u, v) its Fourier 

transfom. Then the Fourier transform of the output image is given by 

 
The multiplication of H and F involves two-dimensional functions and is 

defined on an element-by-element basis. That is, the first element of H multiplies the 

first element of F, the second element of H multiplies the second element of F, and so 

on. each component of H multiplies both the real and imaginary parts of the 

corresponding component in F. Such filters are called zero-phase-shift filters. As their 

name implies, these filters do not change the phase of the transform, a fact that can be 

seen in Eq  by noting that the multiplier of the real and imaginary parts would cancel 

out because they have the same value. 

 

The filtered image is obtained simply by taking the inverse Fourier transform of 

G(u, v): 

 
The final image is obtained by taking the real part of this result and rnultiplying 

it by (-1)x+y to cancel the multiplication of the input image by this quantity. The inverse 

Fourier transform is, in general, complex. when the input image and the filter function 

are real, the imaginary components of the inverse transform should all be zero. the 

inverse DFT generally has parasitic imaginary components due to computational round-

off errors. These components are ignored. 
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The filtering procedure just outlined is summarized in Fig. in a slightly more 

general form that includes pre- and post processing stages. In addition to the (-1)x+y 

examples of other processes might include cropping of the input image to its closest 

even dimensions (required for proper transform centering), gray-level scaling, 

conversion to floating point on input, and conversion to an 8-bit integer format on the 

output. Multiple filtering stages and other pre- and post processing functions are 

possible. The important point to keep in mind is that the filtering process is based on 

modifying the transform of an image in some way via a filter function and then taking 

the inverse of the result to obtain the processed output image. 

Some basic filters and their properties 

Suppose that we wish to force the average value of an image to zero. According 

to Eq), the average value of an image is given by F(0,0). If we set this term to zero in 

the frequency domain and take the inverse transform, then the average value of the 

resulting image will be zero. Assuming that the transform has been centered this 

operation by multiplying all values of F(u, v) by the filter function: 

 
All this filter would do is set F(0,0) to zero and leave all other frequency 

components of the Fourier transform untouched, as desired. The processed image (with 

zero average value) can then be obtained by taking the inverse Fourier transform of H(u, 

v)F(u, v), as indicated in Eq. As stated earlier, both the real and imaginary parts of F(u, 

2)) are multiplied by the filter function H (u, v). The filter is called a notch filter because 

it is a constant function with a hole (notch) at the origin. the drop in overall average 

gray level resulting from forcing the average value to zero; note also the "byproduct" 

result of making prominent edges stand out. 

 

notch filters are exceptionally useful tools when it is possible to identify spatial image 

effects caused by specific, localized frequency domain components. 
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Low frequencies in the Fourier transform are responsible for the general gray-

level appearance of an image over smooth areas. while high frequencies are responsible 

for detail, such as edges and noise. These ideas are discussed in more detail in the 

sections that follow, but it will be instructive to complement our illustration of the notch 

filter with an example of filters in these other two categories. 

A filter that attenuates high frequencies while "passing" low frequencies is called a 

lowpass filter. A filter that has the opposite characteristic is appropriately called a 

highpass filter. We would expect a lowpass-filtered image to have less sharp detail than 

the original because the high frequencies have been attenuated. Similarly, a highpass-

filtered image would have less gray level variations in smooth areas and emphasized 

transitional (e.g., edge) gray-level detail. Such an image will appear sharper. 

 

The filters, H(u, v), shown are both circularly symmetric. After shifting their 

origin to the center of the frequency rectangle occupied by F(u, v), they were multiplied 

by the centered transform. Taking the real part of each result and multiplying it by (-

l)x+y yielded the images on the right. As expected, the image in Fig. 4.7(b) is blurred, 

and the image in Fig.4.7(d) is sharp, with little smooth gray-level detail because the 

F(0,O) term has been set to zero. This is typical of high passed results, and a procedure 

often followed is to add a constant to the filter so that it will not completely eliminate 

F(0, 0). 

 
Correspondence between Filtering in the Spatial and Frequency Domains 

The most fundamental relationship between the spatial and frequency domains 

is established by a well-known result called the convolution theorem. 

The process by which we move a mask from pixel to pixel in an image, and compute a 

predefined quantity at each pixel, is the foundation of the convolution process. 

Formally, the discrete convolution of two functions f ( x , y) and h(x, y) of size M X N 

is denoted by f (x, y ) * h(x, y) and is defined by the expression 
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With the exception of the leading constant, the minus signs, and the limits of the 

summation, this expression is similar in form to Eq. (3.5-1). The minus signs, in 

particular, simply mean that function h is mirrored about the origin. This is inherent in 

the definition of convolution. Equation (4.2-30) is really nothing more than an 

implementation for (1) flipping one function about the origin; (2) shifting that function 

with respect to the  other by changing the values of ( x , y); and (3) computing a sum of 

products over all values of m and n, for each displacement ( x , y). The displacements 

(x, y) are integer increments that stop when the functions no longer overlap. 

  

Letting F(u, u) and H(u, v) denote the Fourier transforms off ( x . y) and h(x, y), 

respectively, one-half of the convolution theorem simply states that f (x, y) * h(x, y) 

and F(u, v)H(u, v) constitute a Fourier transform pair. This result is formally stated as 

 
The double arrow is used to indicate that the expression on the left (spatial 

convolution) can be obtained by taking the inverse Fourier transform of the expression 

on the right [the product F(u, v)H(u, v) in the frequency domain]. Conversely, The 

expression on the right can be obtained by taking the forward Fourier transform of the 

expression on the left-An analogous result is that convolution in the frequency domain 

reduces to multiplication in the spatial domain, and vice  versa; that is, 

 
An impulse function of strength A, located at coordinates (x0,y0), is denoted by 

Aδ(X - xo, y - yo) and is defined by the expression 

 
This equation states that the summation of a function s(x, y ) multiplied by an 

impulse is simply the value of the function at the location of the impulse, multiplied by 

the strength of the impulse. It is understood that the limits of the summation are the 

same as the limits spanned by the function. We point out that Aδ (x - xo, y - yo also is 

an image of size M x N . It is composed of all zeros, except at coordinates (x0,yo),w 

here the value of the image is A. 

 

Convolution of a function with an impulse "copies" the value of that function at 

the location of the impulse. This characteristic is called the shifting property of the 

impulse function. Of particular importance at the moment is the case of a unit impulse 

located at the origin, which is denoted as S(x, y). In this case, 

 
We can compute the Fourier transform of a unit impulse at the origin 
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The Fourier transform of an impulse at the origin of the spatial domain is a real 

constant (this means that the phase angle is zero). If the impulse were located elsewhere, 

the transform would have complex components. The magnitude would be the same, 

with the translation of the impulse being reflected in a nonzero phase angle in the 

transform. 

 

let f (x, y) = δ (x, y} and carry out the convolution, gives us 

 
By combining the results of last two Eqs, we obtain 

 
Using only the properties of the impulse function and the convolution theorem, 

we have established that filters in the spatial and frequency domains constitute a Fourier 

transform pair. Thus, given a filter in the frequency domain, we can obtain the 

corresponding filter in the spatial domain by taking the inverse Fourier transform of the 

former. The reverse also is true. 

Therefore, in practice, specifying a filter in the frequency domain and then 

taking the inverse transform to compute an equivalent spatial domain filter of the same 

size does not really help matters from a computational point of view. if both filters are 

of the same size, it generally is more efficient computationally to do the filtering in the 

frequency domain. But we use much smaller filters in the spatial domain. 

 

Filtering often is more intuitive in the frequency domain. However, whenever 

possible, it makes more sense to filter in the spatial domain using small filter masks. 

Equation (4.2-37) tells us that we can specify filters in the frequency domain, take their 

inverse transform, and then use the resulting filter in the spatial domain as a guide for 

constructing smaller spatial filter masks. Keep in mind during the following discussion 

that the Fourier transform and its inverse are linear processes, so the discussion is by 

definition limited to linear filtering. 

 

Filters based on Gaussian functions are of particular importance because their 

shapes are easily specified and because both the forward and inverse Fourier 
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transforms of a Gaussian function are real Gaussian functions.  

Let H(u) denote a frequency domain, Gaussian filter function given by the equation 

 
where σ is the standard deviation of the Gaussian curve. It can be shown that 

the corresponding filter in the spatial domain is 

 
These two equations represent an important result for two reasons: (1) They 

constitute a Fourier transform pair, both components of which are Gaussian and real. 

This facilitates analysis considerably because we do not have to be concerned with 

complex numbers. In addition. Gaussian curves are intuitive and easy to manipulate. 

(2)these functions behave reciprocally with respect to one another. In other words, when 

H (u) has a broad profile (large value of g), h ( x ) has a narrow profile, and vice versa. 

In fact, when a approaches infinity, H(u) tends toward a constant function and h(.x) 

tends toward an impulse. 

 
A glaring similarity between the two filters is that all the values are positive in 

both domains. Thus, we arrive at the conclusion that we can implement lowpass filtering 

in the spatial domain by using a mask with all positive coefficients. Another important 

characteristic is the reciprocal relationship. The narrower the frequency domain filter, 

the more it will attenuate the low frequencies, resulting in increased blurring. In the 

spatial domain this means a wider filter, which in turn implies a larger mask. 

 

More complex filters can be constructed from the basic Gaussian function. For 

instance, we can construct a highpass filter as a difference of Gaussians, as follows: 
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with A>= B and σ1 > σ2.The corresponding filter in the spatial domain is 

 
A question that often arises at this point in the development of frequency domain 

techniques is the issue of computational complexity. Why do in the frequency domain 

what could be done (at least partially) in the spatial domain using small spatial masks? 

The basic answer is twofold. First, as we have seen, the frequency domain carries with 

it a significant degree of intuitiveness regarding how to specify filters. The second part 

of the answer depends on the size of the spatial masks and is usually answered with 

respect to comparable implementations. 

 

A benchmark used frequently for this purpose is implementation of convolution 

in the spatial and frequency domains. we know from the convolution theorem that we 

can obtain the same result via the frequency domain by taking the inverse transform of 

the product of the transforms of the two functions. 

 

Smoothing Frequency-Domain Filters 

Edges and other sharp transitions (such as noise) in the gray levels of an image 

contribute significantly to the high-frequency content of its Fourier transform. Hence 

smoothing (blurring) is achieved in the frequency domain by attenuating a specified 

range of high-frequency components in the transform of a given image. 

Our basic "model" for filtering in the frequency domain is given by 

 
where F(u, v) is the Fourier transform of the image to be smoothed. The objective is to 

select a filter transfer function H(u, v) that yields G(u, v) by attenuating the high-

frequency components of F(u, v). 

three types of lowpass filters: ideal, Butterworth, and Gaussian filters. These three 

filters cover the range from very sharp (ideal) to very smooth (Gaussian) filter functions. 

The Butterworth filter has a parameter, called the filter order. For high values of this 

parameter the Butterworth filter approaches the form of the ideal filter. For lower-order 

values, the Butteworth filter has a smooth form similar to the Gaussian filter. Thus, the 

Butterworth filter may be viewed as a transition between two "extremes." 

Ideal Lowpass Filters 

'The simplest lowpass filter we can envision is a filter that "cuts off" all high 

frequency components of the Fourier transform that are at a distance greater than a 

specified distance D, from the origin of the (centered) transform. Such a filter is called 

a two-dimensional (2-D) ideal lowpass filter (ILPF) and has the transfer function 
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where Do is a specified nonnegative quantity, and D(u, v) is the distance from 

point (u, v) to the center of the frequency rectangle. If the image in question is of size 

M X N, we know that its transform also is of this size, so the center of the frequency 

rectangle is at (u, v) = (M/2, N/2) due to the fact that the transform has been centered. 

the distance from any point (u, v) to the center (origin) of the Fourier transform is given 

by 

 

 
The name ideal filter indicates that all frequencies inside a circle of radius D,, 

are passed with no attenuation, whereas all frequencies outside this circle are 

completely attenuated. The lowpass filters considered in this chapter are radially 

symmetric about the origin. This means that a cross section extending as a function of 

distance from the origin along a radial line is sufficient to specify the filter. The 

complete filter transfer function can be visualized by rotating the cross section 360" 

about the origin. 

 

For an ideal lowpass filter cross section, the point of transition between H(u, v) 

= 1 and H(u,v) = 0 is called the cutoff frequencies. 

The lowpass filters introduced in this section are compared by studying their behavior 

as a function of the same cutoff frequencies. One way to establish a set of standard 

cutoff frequency loci is to compute circles that enclose specified amounts of total image 

power P1. This quantity is obtained by summing the components of the power spectrum 

at each point (u: v), for u = 0, 1,2.. . . . M – 1 and v=0,1,2 ,..., N-1.that is, 

 
If the transform has been centered, a circle of radius v with origin at the center 

of the frequency rectangle encloses n percent of the power, where 

 
and the summation is taken over the values of (u. v) that lie inside the circle or on its 

boundary. 

 

The blurring and ringing properties of the ILPF can be explained by reference 
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to the convolution theorem. The Fourier transforms of the original image f (x, y) and 

the blurred image g(x, y) axe related in the frequency domain by the equation. 

 
where, as before, H(u, u) is the filter function and F and G are the Fourier 

transforms of the two images just mentioned. The convolution theorem tells us that the 

corresponding process in the spatial domain is 

 
where h(x, y) is the inverse Fourier transform of the filter transfer function H 

(u, v). 

The key to understanding blurring as a convolution process in the spatial domain 

lies in the nature of h(x, y). This is the function H(u, v) in the frequency domain, The 

spatial filter function h(x, y) was obtained in the standard way: (1) H(u, v) was 

multiplied by (-1)u+v for centering; (2) this was followed by the inverse Dm, and (3) the 

real part of the inverse DFT was multiplied by (-1)x+y. We see that the filter h(x, y) has 

two major distinctive characteristics: a dominant component at the origin, and 

concentric, circular components about the center component. The center component is 

primarily responsible for blurring. The concentric components are responsible primarily 

for the ringing characteristic of ideal filters, Both the radius of the center component 

and the number of circles per unit distance from the origin are inversely proportional to 

the value of the cutoff frequency of the ideal filter. The insert at the top is a gray level 

profile of a horizontal scan line through the center of the spatial filter. The axis shown 

indicates zero amplitude, so we see that the spatial filter has negative values. This 

normally is not a serious problem because the larger center component dominates the 

convolution result. However, the filtered image can have negative values, so scaling 

normally is required. 

 

Suppose next that f ( x , y ) is a simple image composed of five bright pixels on 

a black background, as Fig. (c) shows. These bright points may be viewed as 

approximations to impulses, whose strength depends on the intensity of the points. Then 

the convolution of h(x, y) and f ( x , y) is simply a process of "copying" h(x,y ) at the 

location of each impulse, as noted in Section .T he result of this operation, shown in 

Fig. (d), explains how the original points are blurred as a consequence of convolving f 

( x , y ) with the blurring filter function h(x, y). Note also that ringing was introduced 

during the same process. In fact, the ringing is so severe in this case that distortion is 

caused by their interference with one another. These concepts are extended 

conceptually to more complex images by considering each pixel as an impulse whose 

strength is proportional to the gray level of the pixel. The insert at the bottom of Fig.  

shows the gray-level profile of a diagonal scan line through the center of the filtered 

image. 
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Butterworth Lowpass Filters 

The transfer function of a Butterworth lowpass filter (BLPF) of order n, and with cutoff 

frequency at a distance Do, from the origin, is defined as 

 
Unlike the ILPF, the BLPF transfer function does not have a sharp discontinuity that 

establishes a clear cutoff between passed and filtered frequencies. For filters with 

smooth transfer functions, defining a cutoff frequency locus at points for which H(u, v) 

is down to a certain fractional its maximum value is customary. H(u, v) = 0.5 (down 

50% from its maximum value of 2) when D(u,v) = Do. 

 
A Butterworth filter of order I has no ringing. Ringing generally is imperceptible in 

filters of order 2, but can become a significant factor in filters of higher order. Figure  

shows an interesting comparison between the spatial representations of BLPFs of 

various orders (with cutoff frequency of 5 pixels). Shown also is the gray-level profile 

along a horizontal scan line through the center of each fi1ter.  
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In order to facilitate comparisons additional enhancing with a gamma 

transformation was applied to the images of Fig.  to accentuate even more the 

components further away from the origin. The BLPF of order 1 [Fig. 4 has neither 

ringing nor negative values. The filter of order 2 does show mild ringing and small 

negative values, but they certainly are less pronounced than in the ILPF, As the 

remaining images show, ringing in the BLPF becomes significant for higher-order 

filters, A Butterworth filter of order 20 already exhibits the characteristics of the 1LPE 

which can be seen by comparing Figs. (d) and (b). In the limit, both filters are identical. 

In general, BLPFs of order 2 are a good compromise between effective lowpass filtering 

and acceptable ringing characteristics, 

 
Gaussian Lowpass Filters 

The form of these filters in two dimensions is given by 

 
D(u, v) is the distance from the origin of the Fourier transform, which we 

assume has been shifted to the center of the frequency rectangle using the procedure 

 
σ is a measure of the spread of the Gaussian curve. By letting σ = Do, we can express 

the filter in a more familiar form in terms of the notation in this section: 

 
where Do, is the cutoff frequency. When D(u. v) = Do, the filter is down to 
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0.607 of its maximum value. The inverse Fourier transform of the Gaussian lowpass 

filter also is Gaussian. 

 

Sharpening Frequency Domain Filters 

An image can be blurred by attenuating the high-frequency components of its 

Fourier transform. Because edges and other abrupt changes in gray levels are associated 

with high-frequency components, image sharpening can be achieved in the frequency 

domain by a highpass filtering process, which attenuates the low-frequency 

components without disturbing high-frequency information in the Fourier transform. 

We consider only zero-phase-shift filters that are radially symmetric. 

Because the intended function of the filters in this section is to perform precisely the 

reverse operation of the ideal lowpass filters discussed in the previous section, the 

transfer function of the highpass filters discussed in this section can be obtained using 

the relation 

 
where H1p(u, v) is the transfer function of the corresponding lowpass filter. 

That is, when the lowpass filter attenuates frequencies, the highpass filter passes them, 

and vice versa. 

 

we consider ideal, Butterworth, and Gaussian highpass filters. we illustrate the 

characteristics of these filters in both the frequency and spatial domains. Figure shows 

typical 3-D plots, image representations, and cross sections for these fi1ters. 
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a spatial representation of a frequency domain filter is obtained by (1) multiplying H(u, 

v) by (-1)u+v for centering; (2) computing the inverse DFT; and (3) multiplying the real 

part of the inverse DFT by (-1)x+y. 
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Ideal Highpass Filters 

A 2-D ideal highpass filter (IHPF) is defined as 

 
where Do, is the cutoff distance measured from the origin of the frequency rectangle. 

this filler is the opposite of the ideal lowpass filter in the sense that it sets to zero all 

frequencies inside a circle of radius D,, while passing, without attenuation, all 

frequencies outside the circle. As in the case of the ideal lowpass filter, the IHPF is not 

physically realizable with electronic components. However, since it can be 

implemented in a computer, we consider it for completeness. 

 
Butterworth Highpass Filters 

The transfer function of the Butterworth highpass filter (BHPF) of order n and with 

cutoff frequency locus at a distance Do from the origin is given by 
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Gaussian Highpass Filters 

The transfer function of the Gaussian highpass filter (GHPF) with cutoff frequency 

locus at a distance Do from the origin is given by 

 

 
The Laplacian in the Frequency Domain 

It can be shown that 

 
From this simple expression, it follows that 

 
The expression inside the brackets on the left side of Eq. is recognized as the Laplacian 

off ( x , y). Thus, we have the important result 
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which simply says that the Laplacian can be implemented in the frequency domain by 

using the filter 

 
As in all filtering operations in this chapter, the assumption is that the origin of F(u,v) 

has been centered by performing the operation f(x,y) (-1)x+y prior to taking the 

transform of the image. As discussed earlier, if f (and F) are of size M X N, this 

operation shifts the center transform so that (u,v) = (0, 0) is at point (M/2,N /2) in the 

frequency rectang1e.As before, the center of the filter function also needs to be shifted: 

 
The Laplacian-filtered image in the spatial domain is obtained by computing the Inverse 

Fourier transform of H(u,v) F(u,v)  

 
Conversely, computing the Laplacian in the spatial domain and computing the Fourier 

transform of the result is equivalent to multiplying F(u. v) by H(u, v). We express this 

dual relationship in the familiar Fourier transform-pair notation 

 
The spatial domain Laplacian filter function obtained by taking the inverse Fourier 

transform of Eq. (4.4-9) has some interesting properties, as Fig. 4.27 shows. Figure 

4.27(a) is a 3-D perspective plot of Eq. (4.4-9). The function is centered at (M/2. N / 2 

) , and its value at the top of the dome is zero. All other values are negative-Figure 

4.27(b) shows H(u, v) as an image, also centered. Figure 4.27(c) is the Laplacian in 

the spatial domain, obtained by multiplying by H(u, 2)) by (-I)x+y, taking the inverse 

Fourier transform, and multiplying the real part of the result by (-1)"+Y. Figure 4.27(d) 

is a zoomed section at about the origin of Fig. 4,27(c): Figure 4.27(e) is a horizontal 

gray-level profile passing through the center of the zoomed section. 

 

we form an enhanced image g(x, y) by subtracting the Laplacian from the original 

image: 

 
The Laplacian is subtracted from (rather than added to) the original because of the 

negative sign. 

As in the spatial domain, where we obtained the enhanced image with a single mask, it 

is possible to perform the entire operation in the frequency domain with only one filter, 

given by 

 
The enhanced image is obtained with a single inverse transform operation: 
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Selective filtering 

Unsharp Masking, High-Boost Filtering, and High-Frequency Emphasis Filtering 

All the filtered images have one thing in common: Their average background intensity 

has been reduced to near black.This is due to the fact that the highpass filters we applied 

to those images eliminate the zero-frequency component of their Fourier transforms. 

the solution to this problem consists of adding a portion of the image back to the filtered 

result. In fact, enhancement using the Laplacian does precisely this, by adding back the 

entire image to the filtered result. Sometimes it is advantageous to increase the 

contribution made by the original image to the overall filtered result. This approach, 

called high-boost filtering, is a generalization of unsharp masking. 

 

Unsharp masking consists simply of generating a sharp image by subtracting from an 

image a blurred version of itself. Using frequency domain terminology, this means 

obtaining a highpass-filtered image by subtracting from the image a lowpass-filtered 

version of itself. That is, 

 
High-boost filtering generalizes this by multiplying f ( x , y) by a constant A>=1 
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Thus, high-boost filtering gives us the flexibility to increase the contribution made by 

the image to the overall enhanced result. This equation may be written as 

 

 
This result is based on a highpass rather than a lowpass image. When A = 1, high-boost 

filtering reduces to regular highpass filtering. As A increases past 1, the contribution 

made by the image itself becomes more dominant. 

From Eq, Fhp(u,v) = F(u,v) - fip(u,v ) . But, f1p(u,v ) = Hlp(u, v) F(u, v), where Hlp is 

the transfer function of a lowpass filter. Therefore, unsharp masking can be 

implemented directly in the frequency domain by using the composite filter. 

 
high-boost filtering can be implemented with the composite filter 

 
with A>=1. The process consists of multiplying this filter by the (centered) transform 

of the input image and then taking the inverse transform of the product. Multiplication 

of the real part of this result by (-l)x+Y gives us the high boost filtered image Fhb(x, y) 

in the spatial domain. 

 

it is advantageous to accentuate the contribution to enhancement made by the high-

frequency components of an image. In this case, we simply multiply a highpass filter 

function by a constant and add an offset so that the zero frequency term is nor eliminated 

by the filter. This process, called high frequency emphasis has a filler transfer function 

given by 

 
where a>=0 and b > 0.Typical values of a are in the range 0.25 lo 0.5 and typical values 

of b are in the range 1.5 to 2.0. With reference to Eq. (4.4-17), we see that high-

frequency emphasis reduces to high-boost filtering when a = ( A - 1) and b = 1. When 

b > 1, the high frequencies are emphasized, thus giving this procedure its name. 

 

Highpass filtering is not overly sensitive to this parameter, as long as the radius of the 

filter is not so small that frequencies near the origin of the transform are passed. The 

advantage of high-emphasis filtering the image is still dark, the gray-level tonality due 

to the low frequency components was not lost. 

 

Homomorphic Filtering 

The illumination-reflectance model can be used to develop a frequency domain 

procedure for improving the appearance of an image by simultaneous gray-level range 

compression and contrast enhancement. An image f (x, y) can be expressed as the 
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product of illumination and reflectance components: 

 
cannot be used directly to operate separately on the frequency components of 

illumination and reflectance because the Fourier transform of the product of two 

functions is not separable; in other words, 

 
suppose, however, that we define 

 
Then 

 

 
where Fi(u, v) and Fr(u, v) are the Fourier transforms of In i(x, y ) and ln r(x, y ), 

respectively. 

If we process Z(u, v) by means of a filter function H(u, v) then 

 
where S(u, v) is the Fourier transform of the result. In the spatial domain, 

 
By letting 

 

 
FinalIy, as z(x, y) was formed by taking the logarithm of the original image f (x, y), the 

inverse (exponential) operation yields the desired enhanced image, denoted by g(x, y); 

that is, 

 
Where 
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are the illumination and reflectance components of the output image. 

 

The enhancement approach using the foregoing concepts is summarized 

 
This method is based on a special case of a class of systems known as homomorphic 

systems. The key to the approach is the separation of the illumination and reflectance 

components achieved in the form. The homomorphic filter function H(u,v) can then 

operate on these components separately 

 

The illumination component of an image generally is characterized by slow spatial 

variations, while the reflectance component tends to vary abruptly, particularly at the 

junctions of dissimilar objects. These characteristics lead to associating the low 

frequencies of the Fourier transform of the logarithm of an image with illumination and 

the high frequencies with reflectance. A1 though these associations are rough 

approximations, they can be used to advantage in image enhancement. 

 

A good deal of control can be gained over the illumination and reflectance components 

with a homomorphic filter-This control requires specification of a filter function N(u, 

v) that affects the low- and high-frequency components of the Fourier transform in 

different ways. Figure 4.32 shows a cross section of such a filter. If the parameters yl, 

and yh are chosen so that yl < 1 and yh > 1, the filter function shown in Fig tends to 

decrease the contribution made by the low frequencies (illumination) and amplify the 

contribution made by high frequencies (reflectance). The net result is simultaneous 

dynamic range compression and contrast enhancement. 
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The curve shape shown in Fig. can be approximated using the basic form of any of the 

ideal highpass filters discussed in the previous section. For example, using a slightly 

modified form of the Gaussian highpass filter gives us 

 
The constant c has been introduced to control the sharpness of the slope of the filter 

function as it transitions between yh, and yl. 
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UNIT- III IMAGE RESTORATION 

 

 

As in image enhancement, the ultimate goal of restoration techniques is to improve an image in 

some predefined sense. Although there are areas of overlap, image enhancement is largely a 

subjective process, while image restoration is for the most part an objective process. Restoration 

attempts to reconstruct or recover an image that has been degraded by using a priori knowledge 

of the degradation phenomenon. Thus restoration techniques are oriented toward modeling the 

degradation and applying the inverse process in order to recover the original image.  

 

 A Model of the Image Degradation/Restoration Process 

As Fig. 5.1 shows, the degradation process is modeled in this chapter as a degradation 
function that, together with an additive noise term, operates on an input image/(x, y) to 

produce a degraded image g ( x , y ). Given g( x , y), some knowledge about  the degradation  
function //, and some knowledge about  the additive noise term rj ( x , y) , the objective 
of restoration is to obtain an estimate 

f (\x  y ) of the original image. We want the estimate to be as close as possible 
to the original input image and, in  general, the more we know about  H and 17, the 

closer/( x , y) will be to/(x, y). Tbe approach used throughout most of this chapter is based 
on various types of image restoration filters. 

It is shown in Section 5.5 that if H is a linear, position-invariant process, then the degraded 

image is given in the spatial domain by 

g( x, y ) = h( x , y ) *  f { x, y )  +  r)( x , y ) (5.1-1) 

Where h( x, y ) is the spatial representation of the degradation function and, as in Chapter 4, 

the symbol indicates convolution. We know from  the discussion in Sections 4.2.4 and  

4.6.4 that convolution in  the spatial domain is equal  to multiplication in the  frequency  

domain, so  we  may  write  the  model  in Eq.  (5.1-1) in an equivalent frequency domain 

representat ion : 

G( u, v ) = H ( u, v ) F ( u, v ) -h N ( u, v ) (5.1-2) 

where  the  terms in capital  letters are  the  Fourier  transforms of  

the corresponding terms in E.q. (5.1-1). 

 

 

 

 

 

 

 

Noise Models 

The principal sources of noise in digital images arise during image acquisition (Digitization) 

and/or transmission. The performance of imaging sensors is affected by a variety of 

factors.such as environmental conditions during image acquisition, and by the quality of the 

sensing elements themselves. For instance, in acquiring images with a CCD camera, light 

levels and sensor temperature are major factors affecting the amount of noise in the 

resulting image. Images are corrupted during transmission principally due to interference in 

the channel used for transmission.  
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For example, an image transmitted using a wireless network might be corrupted as a result of 

lightning or other atmospheric disturbance. 

 

Spatial and Frequency Properties of  Noise 

Relevant to our discussion are parameters that define the spatial characteristics of noise, and 

whether the noise is correlated with the image. Frequency proper¬ ties refer to the frequency 

content of noise in the Fourier sense (i.e., as opposed to the electromagnetic spectrum). For 

example, when the Fourier spectrum of noise is constant, the noise usually is called white 

noise. 

 

Some Important Noise Probability Density Functions 

Based on the assumptions in the previous section, the spatial noise descriptor with which 

we shall be concerned is the statistical behavior of the gray-level values in the noise 

component of the model in Fig. 5.1. These may be considered random variables, 

characterized by a probability density function ( PDF). The following are among the most 

common PDFs found in image processing applications. 

Gaussian noise 

Because of its mathematical tractability in both  the spatial and  frequency do¬ 

mains. Gaussian (also called norma! ) noise models are used frequently in practice. In fact, 

this tractability is so convenient that it often  results in  Gaussian 

models being used in situations in which they are marginally applicable at  best.  

The PDF of a Gaussian random variable, z, is-given  by 

 

 

 

where z represents gray level, /x is the mean of average value of z, and cr is its standard 

deviation. The standard deviation squared, cr2, is called the variance of z -A plot of this 

function is shown in Fig. 5.2(a). When z is described by Eq. (5.2-1), approximately 70% of its 

values will be in the range [( ), ( )]     , and about 95% will be in the range 

[( 2 ), ( 2 )]     . 

 

Rayleigh noise 

The PDF of Rayleigh noise is given by 

 
The mean and variance of this density are given by 

/ 4a b        5.2.3 

And 

2 (4 )

4

b 



       5.2.4 

Figure 5.2 (b) shows a plot of the Rayleigh density. Note the displacement from the origin and 

the fact that the basic shape of this density is skewed to the right. The Rayleigh density can be 

quite useful for approximating skewed histograms. 
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Erlang (Gamma) noise 

The PDF of Erlang noise is given  by 
 

 

 

where the parameters are such that a > 0,  b is a positive integer, and   !   indicates 

factorial. The  mean  and  variance of  this density are given by 

 

 

 

and 

2

2

b

a
   

 

 

 

 

 

 

 
Figure  shows a plot of this density. Although Eq. (5.2-5) often is referred to as Lhe gamma 

density ,strictly speaking this is correct only when the denom¬ inator is the gamma 

function, T(6) . When the denominator is as shown, the den¬ sity is more appropriately called 

the  Erlang density. 
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Exponential noise 

The PDF of exponential noise is given by 

 

 

where a >0. The mean and variance of this density function are 

 

                 and  
2

2

1

a
   

Note that this PDF is a special case of the Erlang PDF, with 6 = I . Figure5.2(d) 

shows a plot of this density function. 

 

 

 

Uniform noise 

The PDF of uniform noise is given by 

 
The mean of this density function is given by 

2

a b
u


  

and its variance by 
2

2 ( )

12

b a



  

Figure 5.2(e) shows a plot of the uniform density 

 

Impulse (salt-and-pepper) noise 

The PDF of (bipolar) impulse noise is given by 

 
If b > a, gray-level b will appear as a light dot in the image. Conversely, level a will appear like 

a dark dot. If either Pa, or Pb is zero, the impulse noise is called uni polar. If either probability 

is zero, and especially if they are approximately equal, impulse noise values will resemble salt-

and-pepper granules randomly distributed over the image. For this reason. bipolar impulse noise 

also is called salt-and-pepper noise. 

Restoration in the Presence of Noise Only-Spatial Filtering 

When the only degradation present in an image is noise, Eqs. (5.1-1) and (5.1-2) become 

 
And 

 
The noise terms are unknown, so subtracting them from g ( x , y ) or G(u,v,)  is not a realistic 

option. In the case of periodic noise, it usually is possible to estimate N (u,v)from  the spectrum 

of G ( u ,v ) , as noted  in Section 5.2.3. In this case N (u,v) Can be subtracted from G(u,v) to 

obtain an estimate of the orginal image. in general, however? this type of knowledge is the 

exception rather than the rule.   
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Restoration in the presence of noise only-Spatial filtering 

 

Mean Filters 

 Arithmetic mean filter 

This is the simplest of the mean filters. Let   represent ( he set of coordinates in a 
rectangular subimage window of size m X n , centered at point (.v, y ). The arithmetic 
mean filtering process computes the average value of the corrupted image g (.r , y ) in the 

area defined  by S x y - The value of  the  restored image / at any point ( x. y) is simply the 

arithmetic mean computed using the pixels in the 

region defined  by 5
'        . In other words 

 

Geometric mean filter 

An image restored using a geometric mean filter is given by the expression 

 

 

Harmonic mean filter 

The harmonic mean filtering operation is given by the expression 

 

The harmonic mean filter works well for salt noise, but fails for pepper noise. 

It does well also with other types of noise like Gaussian n o i s e . 

Contra harmonic mean filter 

The contra harmonic mean filtering operation yields a restored image based on the expression 

 

 

 

 

where Q is called the order of the filter.This filter is well suited for reducing or vir¬ tually 

eliminating the effects of salt-and-pepper noise. For positive values of Q, the filter eliminates 

pepper noise. For negative values of Q it eliminates salt noise. It cannot do both simultaneously. 

Note that the contraharmonicfilter reduces to the arithmetic mean filter if Q = 0, and to the 

harmonic mean filter if Q  = -1 . 

 

 

Order-Statistics Filters 
Order-statistics filters were introduced in Section 3.6.2. We now expand the 

dis¬ cussion in that section and introduce some additional order-statistics filters. 

As noted in Section 3.6.2, order-statistics filters are spatial filters whose response 

is based on ordering (ranking) the  pixels contained in  the image area encom¬ 

passed by the filter. The response of the filter at any point is determined by the 
ranking result. 
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Median filter 

The best-known order-statistics filter is the median filler , which, as its name im¬ plies, replaces 

the value of a pixel by the median of the gray levels in the neighborhood of that pixel: 

 

Max and min filters 

Although the median filter is by far the order-statistics filter most used in 

image processing, it is by no means the only one. The median represents 

the 50th percentile of  a ranked set  of numbers, but  the reader will 

recall from  basic statis¬ tics that ranking lends itself to many other 

possibilities.  For example, using the 100 th percentile  results in the 

so- called max filter , given by 

 

 

This filter is useful for finding ( he brightest points in an image. Also, 

because pep¬ per noise has very low values, it is reduced by this filter 

as a result of the max' selection process in the subinrage area Sxy. 
The Oth percentile filter is the min   filter 

 

Midpoint filter 

The midpoint filter simply computes the midpoint between the maximum and 

minimum values in the area encompassed by the filter: 

 

 

 

Alpha-trimmed mean filter 

Suppose that we delete the d / 2 lowest and the d / 2 highest gray-level values of 

g ( s. / ) in  the  neighborhood  S _tv . Let g,(,v. 0 represent  the  remaining mn -  d 

pixels. A filter formed by averaging these remaining pixels is called an alpha 

trimmed mean filter: 

 

 

Adaptive Filters 

the Adaptive Filters. 

 

Adaptive filters are filters whose behavior changes based on statistical 

characteristics of the image inside the filter region defined by the m X n rectangular 

window  Sxy. 

Adaptive, local noise reduction filter: 

 

The simplest statistical measures of a random variable are its mean and variance. 

These are reasonable parameters on which to base an adaptive filler because they are 

quantities closely related to the appearance of an image.  
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The mean gives a measure of average gray level in the region over which the mean is 

computed, and the variance gives a measure of average contrast in that region. 

This filter is to operate on a local region, Sxy. The response of the filter at any point 

(x, y) on which the region is centered is to be based on four quantities: (a) g(x, y), the value 

of the  noisy image at (x, y); (b) a2, the variance of the noise corrupting /(x, y) to form g(x, 

y); (c) ray, the local mean of the pixels in Sxy; and (d) σ
2

L , the local variance of the pixels 

in  Sxy. 

The behavior of the filter to be as follows: 

 

1. If σ
2
η is zero, the filler should return simply the value of g (x, y). This is the trivial, zero-

noise case in which g (x, y) is equal to f (x, y). 

2. If the local variance is high relative to σ
2
η the filter should return a value close to g (x, 

y). A high local variance typically is associated with edges, and these should be  

preserved. 

 

3. If the two variances are equal, we want the filter to return the arithmetic mean value of 

the pixels in Sxy. This condition occurs when the local area has the same properties as 

the overall image, and local noise is to be reduced simply by averaging. 

 

Adaptive local noise filter is given by, 

 

 

The only quantity that needs to be known or estimated is the variance of the overall noise, a2.    

The other parameters are computed from the pixels in Sxy at each location (x,  y) on  which  

the filter window is centered. 

 

Adaptive median filter: 

 

The median filter performs well as long as the spatial density of the impulse noise is not large 

(as  a rule of thumb, Pa and Pb less than 0.2). The adaptive median filtering can handle 

impulse noise with probabilities even larger than these. An additional benefit of the adaptive 

median filter is    that it seeks to preserve detail while smoothing nonimpulse noise,  

something  that  the "traditional" median filter does not do. The adaptive median filter also 

works in a rectangular window area Sxy. Unlike those filters, however, the adaptive median 

filter changes (increases) the size of Sxy during filter operation, depending on certain 

conditions. The output of the filter is a single value used to replace the value of the pixel at 

(x, y), the particular point on which the window Sxy is centered at a given time. 
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Consider the following notation: 

 

zmin = minimum gray level value in 

Sxy zmax = maximum gray level 

value in Sxy zmcd = median of gray 

levels in Sxy 

zxy = gray level at coordinates (x, y) 

Smax = maximum allowed size of 

Sxy. 

 

The adaptive median filtering algorithm works in two levels, denoted level A and level B, as 

follows: 

Level A: A1 = zmed - zmin 

A2 = zmed - 

zmax If A1 > 0 AND A2 < 0, Go to 

level B Else increase the window 

size 

If window size ≤ Smax repeat level 

A Else output zxy 

Level B: B1 = zxy - zmin 

B2 = zxy - zmax 

If B1> 0 AND B2 < 0, output zxy 

Else output zmed 

Periodic Noise Reduction by Frequency Domain Filtering 

In Chapter 4 we discussed lowpass and bighpass frequency domain filters as 

fundamental tools for image enhancement. In this section we discuss the more 
specialized bandreject, bandpass, and notch filters as tools for periodic noise reduction  
or removal 

Bandreject Filters 

Bandreject filters remove or attenuate a band  of frequencies about  the    origin 

of the Fourier transform.  An ideal bandreject filter is given by the   expression 
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where D( u , v ) is the distance from the origin of the centered frequency rectan¬ gle, as 
given in Eq. (4.3-3), W is the width of the band, and Du is its radial center. Similarly,a 

Butterworth bandreject filter of order n is given by the expression 

 
and  a Gaussian  bandreject filter is given by 

 

 

Figure 5.15 shows perspective plots of  these three filters. 

 

 

 
 

Bandpass Filters 

A bundpaw filler performs the opposite operation of a bandreject filter. In Sec¬ tion 4.4 

we showed how a highpass filter can be obtained from a correspond ¬ ing lowpass filter by 

using Eq .  ( 4.4-1). Similarly, the transfer function F/h[>( / / ,  o) of a bandpass filter is 

obtained from a corresponding bandreject filler with transfer function Hhr( u , v ) by 

using the equation 
7661083308 
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Inverse filtering 

 

 

The objective is to minimize  

 

J (f ) 


n(f ) 

2 



y  Hf 

2
 

 

We set the first derivative of the cost function equal to zero 

J (f ) 
 0  2H

T 
(y  Hf)  0 

f 

 

 

If  M  N 

 

 
and H

1  
exists then 

H
T
Hf  H

T
y 

 

 
f  H

-1 
y 

 

According to the previous analysis if  H  (and therefore  H-1 ) is block circulant the above 

problem can 

be solved as a set of  M  N  scalar problems as follows 

 

F (u,v)  
H

 
(u,v)Y (u, v) 1 

 H 
  f (i, j)  

 
(u,v)Y (u,v)  Y (u,v) 

 

H (u,v) 
2
  H (u,v) 

2
 

 
H (u,v) 

 

 

 

Computational issues concerning inverse filtering 

(I) 

Suppose first that the additive  noise n(i, j) is negligible. A problem arises  if H (u,v) becomes 

very small or zero for some point  filtering cannot be applied. (u, v) or for a whole region in   

the (u, v) plane. In that region  inverse 

Note that in most real applications H (u,v) drops off rapidly as a function of distance from  the 
origin ! 

Minimum Mean Square Error Wiener Filter Used For Image  Restoration. 
 

The inverse filtering approach makes no explicit provision for handling noise. This approach 

incorporates both the degradation function and statistical characteristics of noise into the restoration 

process. The method is founded on considering images and noise as  random  processes, and the 

objective is to find an estimate f of the uncorrupted image f such that the mean square error between 

them is minimized. This error measure is given  by 

e
2 
= E {(f- f )

2
} 

where E{•} is the expected value of the argument. It is assumed that the noise and the image are 

uncorrelated; that one or the other has zero mean; and that the gray levels in the estimate are a linear 

function of the levels in the degraded image. Based on these conditions, the minimum of the error 

function is given in the frequency domain by the  expression 
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where we used the fact that the product of a complex quantity with its conjugate is equal to the 

magnitude of the complex quantity squared. This result is known as the Wiener filter, after N. Wiener 

[1942], who first proposed the concept in the year shown. The filter, which consists of    the terms 

inside the brackets, also is commonly referred to as the minimum mean square error  filter or the least 

square error filter. The Wiener filter does not have the same problem as the inverse filter with zeros in 

the degradation function, unless both H(u, v) and Sη(u, v) are zero for the same value(s) of u and v. 

 

The terms in above equation are as follows: H 

(u, v) = degradation function 

H*(u, v) = complex conjugate of H (u, v) 
 

│H (u, v│ 
2 

= H*(u, v)* H (u, v) 

Sη (u, v) = │N (u, v) 
2 

= power spectrum of the noise 

Sf (u, v) = │F (u, v) 
2 

= power spectrum of the undegraded  image. 

As before, H (u, v) is the transform of the degradation function and G (u, v) is the transform of 

the degraded image. The restored image in the spatial domain is given  by  the  inverse Fourier 

transform of the frequency-domain estimate F (u, v). Note that if the noise is    zero, then the noise 

power spectrum vanishes and the Wiener filter reduces to the inverse  filter. 

When we are dealing with spectrally white noise, the spectrum │N (u, v│ 
2 

is a constant, 

which simplifies things considerably. However, the power spectrum of the undegraded image seldom 

is known. An approach used frequently when these quantities are not known or cannot be estimated is 

to approximate the equation as 

 
 

 
 

where K is a specified constant.   
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Solution: if these points are known they can be neglected in the computation of F(u, v) . 

(II) 

In the presence of external noise we have that 

H 

(u, v)Y (u, v)  N (u, v)

F (u, v)  
H (u, v) 

2
 

 

H 

(u, v)Y (u, v) 


H (u, v) 

2
 

H 

(u, v)N (u, v) 


H (u, v) 

2
 

 

Fˆ  (u, v)  F (u, v)  
N (u, v)

 
H (u, v) 

If  H (u,v) becomes very small, the term  N (u, v) dominates the result. 
 

 

Solution: again to carry out the restoration process in a limited neighborhood about the origin   where 

H (u,v) is not very small. 

This procedure is called pseudoinverse filtering. 

In that case we set 

 H 
 
(u, v)Y (u, v) 




Fˆ  (u, v)  

0 




or 

H (u, v) 
2
 

H (u, v)  0 
 

 
H (u, v)  0 

 H 
 
(u, v)Y (u, v) 




Fˆ  (u, v)  



0 




H (u, v) 
2
 

H (u, v)  



otherwise 

 In general, the noise may very well possess large components at high frequencies  (u, v) ,    while 
 

H (u,v) and Y (u,v)  normally will be dominated by low frequency components. 
 

  is a small number chosen by the user. 

 

 

Constrained least squares (CLS) filtering  

 

It refers to a very large number of restoration algorithms. 

The problem can be formulated as follows. 
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2 2 

f 

 
 

where 

Cf  is a high pass filtered version of the image. 

The idea behind the above constraint is that the highpass version of the image contains a 

considerably large amount of noise! 

Algorithms of the above type can be handled using optimization techniques. 

Constrained least squares (CLS) restoration can be formulated by choosing an f to minimize the 

Lagrangian 

miny  Hf  
2  
  Cf 

2 
Typical choice for  C is the 2-D Laplacian operator given by 

 0.00 

C  

 0.25 

       0.00 

 0.25 

1.00 

 0.25 

0.00 

 0.25



0.00 

  represents either a Lagrange multiplier or a fixed parameter known as regularisation parameter. 
 

  controls the relative contribution between the term y  Hf  
2  

and the term Cf 
2 
. 

 

The minimization of the above leads to the following estimate for the original image 

f  HT
H  C

T
C1 

H
T
y 

 

 

Computational issues concerning the CLS method 

 

(I) Choice of 

The problem of the choice of  has been attempted in a large number of studies and different 

techniques have been proposed. 

One possible choice is based on a set theoretic approach: a restored image is approximated by an 

image which lies in the intersection of the two ellipsoids defined by 

Qf|y   {f |  y  Hf  E  } and 
 

Q  {f | Cf 
2  
  2

} 
 

The center of one of the ellipsoids which bounds the intersection of 

equation 

Qf|y and Qf  , is  given  by the 

minimize 

J (f )  n(f ) 
2  
 y  Hf 

2
 

subject to 

Cf 
2  
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with   (E / )2 

. 

Problem: choice of  E 
2
 

f  HT
H  C

T
C1 

H
T
y 

 

and  2 
. One choice could be 

 

 
Comments 

  
1

 
BSNR 

With larger values of  , and thus more regularisation, the restored image tends to have more ringing. 

With smaller values of  , the restored image tends to have more amplified noise effects. 

 

The variance and bias of the error image in frequency domain are 

 
2  

M   N H (u, v) 
2
 

Var( )   n   
u0v0 H (u, v) 

2  
  C(u, v) 

2 2 

 

2 
M 1 N 1 

Bias( )   n    
u0 v0 

 

The minimum MSE is encountered close to the intersection of the above functions. 

A good choice of  is one that gives the best compromise between the variance and bias of the error 

image. 

 

ITERATIVE METHODS 

 

They refer to a large class of methods that have been investigated extensively over the last decades. 

 

 

Advantages 

 There is no need to explicitly implement the inverse of an operator. The restoration process is 

monitored as it progresses. Termination of the algorithm may take place before convergence. 

 The effects of noise can be controlled in each iteration. 

 The algorithms used can be spatially adaptive. 

 

A general formulation 

 The problem specifications are very flexible with respect to the type of degradation. Iterative 

techniques can be applied in cases of spatially varying or nonlinear degradations or in cases 

where the type of degradation is completely unknown (blind restoration). 

F (u, v) 
2
 2 

C(u, v) 
4
 

H (u, v) 
2  
  C(u, v) 

2 2 
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T 

k 

In general, iterative restoration refers to any technique that attempts to minimize a function of the 

form 

(f ) 

using an updating rule for the partially restored image. 

 
A widely used iterative restoration method is the method of successive approximations where the 

initial estimate and the updating rule for obtaining the restored image are given by 

f0   0 

fk1  fk   (fk ) 

 (fk ) 

Next we present possible forms of the above iterative procedure. 

 

 

Basic iteration 
 
 

(f )  y  Hf 

f0   0 

fk1  fk   (y  Hfk )  y  (I  H)fk 

 

 

Least squares iteration 

 

In that case we seek for a solution that minimizes the function 

M (f )  y  Hf 
2

 
 

A necessary condition for M (f ) to have a minimum is that its gradient with respect to  f  is equal   to 
 

zero, which results in the normal equations 

H
T
Hf  H

T
y 

 

and  

(f )  H
T 

(y - Hf) 

f0   H y 

fk1  fk  H
T 

(y  Hf ) 

 H
T
y  (I  H

T
H)f 

 

 

Constrained least squares iteration 

 

In this method we attempt to solve the problem of constrained restoration iteratively. 

k 
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max 

T 

T T T 

T T T 

As already mentioned the following functional is minimized 

 

 

M (f ,)  y  Hf 
2 
  Cf 

2
 

 

The necessary condition for a minimum is that the gradient of M (f ,) is equal to zero. That is 

 

(f )  f M (f ,)  (H H  C C)f  H y 

The initial estimate and the updating rule for obtaining the restored image are now given by 

f0   H y 

fk1  fk  [H y  (H  H C C)fk ] 

It can be proved that the above iteration (known as Iterative CLS or Tikhonov-Miller 

Method) converges if 

0    
2
 

 

where 

max 
is the maximum eigenvalue of the matrix 

 

(HTH  

CTC) 

 

If the matrices H and C are block-circulant the iteration can be implemented in the 

frequency  domain. 

 

Projection onto convex sets (POCS) 

The set-based approach described previously can be generalized so that any number of prior 

constraints can be imposed as long as the constraint sets are closed convex. 

If the constraint sets have a non-empty intersection, then a solution that belongs to the intersection set 

can be found by the method of POCS. 

Any solution in the intersection set is consistent with the a priori constraints and therefore it is a 

feasible solution. 

Let Q1,Q2 ,,Qm be closed convex sets in a finite dimensional vector space,  with P1, P2 ,, Pm their 

respective projectors. 

The iterative procedure 

 

 

fk1   P1P2 ,Pmfk 

converges to a vector that belongs to the intersection of the sets 

vector f0 . 

Qi ,i  1,2,,m , for any starting 

An iteration of the form fk1   P1P2fk can be applied in the problem described previously, where  we 

seek for an image which lies in the intersection of the two ellipsoids defined by 
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2 2 2 2 

W1 W2 

1 1 2 2 

Qf|y   {f |  y  Hf  E  } and Qf   {f | Cf   } 
 

The respective projections P1f and P2f are defined by 

P f  f  λ I  λ H
T
H1 

H
T 

(y  Hf) 
1 1 1 

P f  [I  λ  I  λ C
T
C1 

C
T
C]f 

2 2 2 

Brief description of other advanced methods 

Spatially adaptive iteration 

The functional to be minimized takes the form 

 

 

where 

y  Hf 
2

 

 

 

 

 (y  Hf)
T

 

M (f ,) 




W1 (y  Hf) 

y  Hf 
2 

 Cf 
2

 

 

Cf 
2

  (Cf)
T

 W2 (Cf) 
 

W1,W2 are diagonal matrices, the choice of which can be justified in various ways. The entries in 

both matrices are non-negative values and less than or equal to unity. 

In that case 

(f )  f M (f ,)  (H 

A more specific case is 

W
T
W H  C

T
 W

T
W C)f  H

T
 W1y 

M (f ,)  y  Hf 
2 
  Cf 

2
 

 

where the weighting matrix is incorporated only in the regularization term. This method is known as 

weighted regularised image restoration. The entries in matrix W will be chosen so that the high- 

pass filter is only effective in the areas of low activity and a very little smoothing takes place in the 

edge areas. 

 

Robust functionals 

 

Robust functionals allow for the efficient supression of a wide variety of noise processes and permit 

the reconstruction of sharper edges than their quadratic counterparts. We are seeking to minimize 

M (f ,)  Rn (y  Hf)  RxCf 

Rn (), Rx () are referred to as residual and stabilizing functionals respectively. 

 

Computational issues concerning iterative techniques 

 

W2 

W 

W1 

T 
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(I) Convergence 

The contraction mapping theorem usually serves as a basis for establishing convergence of iterative 

algorithms. 

According to it iteration 

f0   0 

fk1  fk  (fk )  (fk ) 

converges to a unique fixed point f 
 
, that is, a point such that (f 

 
)  f 

 
, for any initial vector, if the 

operator or transformation (f ) is a  contraction. 

This means that for any two vectors f1  and f2  in the domain of (f )  the following relation  holds 

 

 
  1 

(f1 )  (f2 )  f1  f2 

 

   any norm 

The above condition is norm dependent. 

 

 

(II) Rate of convergence 

The termination criterion most frequently used compares the normalized change in energy at each 

iteration to a threshold such as 

 

 10
6

 

k 

 

 

RECURSIVE METHODS 

 

1. Kalman filtering 

 

Kalman is a recursive filter based on an autoregressive (AR) parametrization of the prior statistical 

knowledge of the image. 

A global state vector for an image model, at pixel position  (i, j) is defined as 

f (i, j)  [ f (i, j), f (i, j 1),, 

f (i 1, j  N ), f (i 1, j  M  1),, f (i  M  1, j  M  1)]
T

 

The image model is then defined as 

f (i, j)  A f (i, j 1)  w(i, j) 
 

y(i, j)  H f (i, j)  n(i, j) 

f 
2 

k 1 k  f 

f 
2 
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ww 

nn 

T 

  the noise 

terms 
w(i, j) and n(i, j) , are assumed to be white, zero-mean, Gaussian   processes, 

 

with covariance matrices  Rww  and Rnn 

 A is the state transition matrix 

 H  is the so called measurement matrix 
 
 

 

Prediction 

fˆ 
 

(m,n)  A fˆ (m,n 1) 
 

  

P
 

(m,n)  AP(m,n 1) A
T  
 R 

The Kalman filter algorithm 

 

 

 

 

Update 

K(m,n)  P
 

(m,n)H
T 

[HP
 

(m,n)H
T 
 R 

 

]1 

fˆ(m,n)  A fˆ(m,n 1)  K(m,n)[y(m,n)  HA fˆ(m,n 1)] 
 

P(m,n)  [I  K(m,n)H ]P
 

(m,n) 
 

 

where 

P
 

(m, n)  E 
 f (m, n)  f̂   

(m, n) f (m, n)  f̂   

(m, n)  



       



      
   

P(m,n)  E f (m,n)  f̂  (m,n) f (m,n)  f̂  (m,n)T 




2. Variations of the Kalman filtering 

 

2.1 Reduced update Kalman filter (RUKF) 

2.2 Reduced order model Kalman filter (ROMKF) 

 

 

 

 

 

 

 

DIRECT METHODS 

 

1. Wiener estimator (stochastic regularisation) 
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W H 

f 

~ 

ff fy 

ff nn yy 

f̂   Rff H  (HR  H    R   )   y 

1 T T 1 

The image restoration problem can be viewed as a system identification problem as follows: 

f (i, j) y(i, j) fˆ (i, j) 
 

  

 

 
 

n(i, j) 

The objective is to minimize the following function 

E{(f  f̂ )
T 

(f  f̂ )} 

To do so the following conditions should hold: 

(i) E{f̂ }  E{f}  E{f}  WE{y} 
 

(ii) the error must be orthogonal to the observation about the mean 

E{(fˆ  f )(y  E{y})
T
}  0 

From (i) and (ii) we have that 

E{(Wy  f )(y  E{y})
T
}  0  E{(Wy  E{f}  WE{y}  f )(y  E{y})

T
}  0 

E{[W(y  E{y})  (f  E{f})](y  E{y})
T
}  0 

If  ~y  y  E{y} and  
~ 
 f  E{f} then 

~ ~ 
E{(W~y  

~
)~y

T 
}  0  E{W~y~y

T
}  E{f~y

T
}  WE{~y~y

T 
}  E{f~y

T
}  WR~~   R~ 

f 
 

If the original and the degraded image are both zero mean then 

R~y~y   Ryy  and  R
f~y  
 Rfy . 

yy f~y 

 

In that case we have that  WRyy   Rfy . 

If we go back to the degradation model and find the autocorrelation matrix of the degraded image then 

we get that 

y  Hf  n  y
T 
 f 

T
H

T 
 n

T
 

E{yy
T 

}  HR H
T 
 R  R 

 

E{fy
T 

}  R H
T 
 R 

 

From the above we get the following result 

W  Rfy Ryy  Rff H  (HRff H   Rnn ) 

and the estimate for the original image is 

T T 1 
ff nn 

Note that knowledge of Rff and Rnn is assumed. 

 
 

In frequency domain 
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W (u, v) 
S ff (u, v)H 

S ff (u, v) H (u, v) 


(u, v) 

 Snn (u, v) 

Fˆ   (u, v) 
S ff (u, v)H 


(u, v)  

Y (u, v) 

S ff (u, v) H (u, v) 
2  
 S (u, v) 

 

 

 

 

Computational issues 

The noise variance has to be known, otherwise it is estimated from a flat region of the observed 

image. 

In practical cases where a single copy of the degraded image is available, it is quite common to use 

S yy (u, v) as an estimate of S ff (u, v) . This is very often a poor estimate ! 

 

 

Wiener smoothing filter 

In the absence of any blur, H (u,v)  1 and 

 
W (u, v) 





S ff (u, v) 

 

 
 

(SNR) 

 

(a)  (SNR)  1 W (u,v)  1 

(b)  (SNR)  1W (u,v)  (SNR) 

S ff (u, v)  Snn (u, v) (SNR)  1 

 

(SNR) is  high  in  low spatial  frequencies and  low in  high  spatial  frequencies so W (u,v) can be 
 

implemented with a lowpass (smoothing) filter. 

 

Relation with inverse filtering 

 
If Snn 

 

(u, v)  0  W (u, v) 
1 

H (u, v) 

 
which is the inverse filter 

 

If Snn (u,v)  0 

 1 

 H (u, v) 
lim W (u, v)  




H (u, v)  0 

Snn0  0 H (u, v)  0 



2 

nn 
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Geometric mean filter 

An image restored using a geometric mean filter is given by the expression 

 

 

Here, each restored pixel is given by the product of the pixels in the sub image window, 

raised to the power 1/mn. As shown in Example 52, a geometric mean filter achieves 

smoothing comparable to the arithmetic mean filter, but it tends to lose less image detail in 

the process. 

Image Reconstruction from projections 
 

Image Reconstruction from projection is a special class of image restoration problem. 

Where a 2D object is reconstructed from several 1D projections. Each projection is obtained 

by projecting a parallel x-rays (or other penetrating radiation) beam through the object. Image 

Reconstruction from projection is a special class of image restoration problem. Where a 2D 

object is reconstructed from several 1D projections. Each projection is obtained by projecting 

a parallel x-rays (or other penetrating radiation) beam through the object. 
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Projections   under   all   the   angle   will   two dimensional representation of the 

image under which one coordinate is position in the projection profile t and, the other is the 

angle 

We can regard the parallel projection as a transformation, which transforms the image 

into another two-dimensional representation. 

The integral of the function f(x,y) along the lines AB is called the ray integers and 

mathematically given by the function.  

 

 

P(t)as a function of t (for a given value of ) defines the parallel projection of f(x,y) 

for an angle . The 2D function P(t) is called a Random Transform of f(x,y). 

There are 2 methods to obtain projection data 

*Parallel Projection 

*Fan Beam Projection 

 

The projection may also be generated by integrating a function along a set of lines 

originating from a point source, such projections are called as fan beam projection. 
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Methods for Generating Projection Data 
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UNIT- IV IMAGE COMPRESSION & WAVELETS AND 

MULTIRESOLUTION PROCESSING  

Image Compression Fundamentals 

 Redundancies in a digital image. 

The term data compression refers to the process of reducing the amount of data required to represent 

a given quantity of information. A clear distinction must be made between data and information. 

They are not synonymous. In fact, data are the means by which information is conveyed. Various 

amounts of data may be used to represent the same amount of information. Such might be the case, 

for example, if a long-winded individual and someone who is short and   to the point were to relate 

the same story. Here, the information of interest is the story; words are the data used to relate the 

information. If the two individuals use a different number of words to tell the same basic story, two 

different versions of the story are created, and at least one includes nonessential data. That is, it 

contains data (or words) that either provide no relevant information   or simply restate that which is 

already known. It is thus said to contain data  redundancy. 

Data redundancy is a central issue in digital image compression. It is not an abstract concept but    a 

mathematically quantifiable entity. If n1 and  n2  denote  the  number  of  information-carrying units 

in two data sets that represent the same information, the relative data redundancy RD of the first data 

set (the one characterized by n1) can be defined  as 
 

where CR , commonly called the compression ratio, is 
 

For the case n2 = n1, CR = 1 and RD = 0, indicating that (relative to the second data set) the first 

representation of the information contains no redundant data. When n2 << n1, CR € ∞ and RD€1, 

implying significant compression and highly redundant data. Finally, when n2 >> n1 , CR€ 0 and 

RD €∞, indicating that the second data set contains much more data than the original 

representation. This, of course, is the normally undesirable case of data expansion. In general, 

CR and RD lie in the open intervals (0, ∞) and (- ∞, 1), respectively. A practical compression 

ratio, such as 10 (or 10:1), means that the first data set has 10 information carrying units (say, 

bits) for every 1 unit in the second or compressed data set. The corresponding redundancy of 

0.9 implies that 90% of the data in the first data set is redundant. 
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In this, we utilize formulation to show how the gray-level histogram of an image also  can  provide 

a great deal of insight into the construction of codes to reduce the amount of data used to represent 

it. 

Let us assume, once again, that a discrete random variable rk in the interval [0, 1] represents the gray 

levels of an image and that each rk occurs with probability pr  (rk). 
 

where L is the number of gray levels, nk is the number of times that the kth gray level appears in the 

image, and n is the total number of pixels in the image. If the number of bits used to represent each 

value of rk is l (rk), then the average number of bits required to represent each pixel  is 
 

That is, the average length of the code words assigned to the various gray-level values is found    by 

summing the product of the number of bits used to represent each gray level and  the  probability 

that the gray level occurs. Thus the total number of bits required to code an M X N image is MNLavg. 

 

 
Interpixel Redundancy: 

 

Consider the images shown in Figs. 1.1(a) and (b). As Figs. 1.1(c) and (d) show, these images  have 

virtually identical histograms. Note also that both histograms are trimodal, indicating the presence 

of three dominant ranges of gray-level values. Because the gray levels in these images are not 

equally probable, variable-length coding can be used to reduce the coding  redundancy  that would 

result from a straight or natural binary encoding of their pixels. The coding process, however, would 

not alter the level of correlation between the pixels within the images. In other words, the codes 

used to represent the gray levels of each image have nothing to do with the correlation between 

pixels. These correlations result from the structural or  geometric  relationships between the objects 

in the image. 
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Fig.1.1 Two images and their gray-level histograms and normalized autocorrelation 

coefficients along one line. 
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Figures 1.1(e) and (f) show the respective autocorrelation coefficients computed along one line    of 

each image. 
 

 

where 
 

 

The scaling factor in Eq. above accounts for the varying number of sum terms that arise for each 

integer value of Δn. Of course, Δn must be strictly less than N, the number of pixels on a line.   The 

variable x is the coordinate of the line used in the computation. Note the dramatic difference between 

the shape of the functions shown in Figs. 1.1(e) and (f). Their shapes  can  be  qualitatively related 

to the structure in the images in Figs. 1.1(a) and (b).This relationship is particularly noticeable in 

Fig. 1.1 (f), where the high correlation between pixels separated by 45 and 90 samples can be directly 

related to the spacing between the vertically oriented matches of Fig. 1.1(b). In addition, the adjacent 

pixels of both images are highly correlated. When Δn is 1, γ  is 0.9922 and 0.9928 for the images of 

Figs. 1.1 (a) and (b), respectively. These values are    typical of most properly sampled television  

images. 

These illustrations reflect another important form of data 

redundancy—one directly related  to the interpixel correlations within an image. Because the  value 

of any given pixel can be reasonably predicted from the value of its neighbors, the information 

carried by individual pixels is relatively small. Much of the visual contribution of a single pixel to 

an image is redundant; it could have been guessed on the basis of the values of its neighbors. A 

variety of names, including spatial redundancy, geometric redundancy, and interframe redundancy, 

have been coined to refer to these interpixel dependencies. We use the term interpixel redundancy 

to encompass them all. 

In order to reduce the interpixel redundancies in an image, the 2-D pixel 

array normally used for human viewing and interpretation must be transformed into a more efficient 

(but usually "nonvisual") format. For example, the differences between adjacent pixels can be used 

to represent an image. Transformations of this type (that is, those that remove interpixel redundancy) 

are referred to as mappings. They are called reversible mappings if the original image elements can 

be reconstructed from the transformed data  set. 
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Psychovisual Redundancy: 
 

The brightness of a region, as perceived by the eye, depends on factors  other  than  simply  the light 

reflected by the region. For example, intensity variations (Mach bands) can be perceived in  an area 

of constant intensity. Such phenomena result from the fact that the eye does not respond with equal 

sensitivity to all visual information. Certain information simply has less relative importance than 

other information in normal visual processing. This information is said to be psychovisually 

redundant. It can be eliminated without significantly impairing the quality of  image perception. 

That psychovisual redundancies exist should not come as a surprise,  because  human 

perception of the information in an image normally does not involve quantitative analysis of every 

pixel value in the image. In general, an observer  searches  for distinguishing  features such as edges 

or textural regions and mentally combines them into recognizable groupings. The brain then 

correlates these groupings with prior knowledge in order to complete the image interpretation 

process. Psychovisual redundancy is fundamentally different  from  the  redundancies discussed 

earlier. Unlike coding and interpixel redundancy, psychovisual  redundancy is associated with real 

or quantifiable visual information. Its elimination is possible only because the information itself is 

not essential for normal visual processing. Since the elimination of psychovisually redundant data 

results in a loss of quantitative information, it is commonly referred to as quantization. 

This terminology is consistent with normal usage of the word, which generally 

means the mapping of a broad range of input values to a limited number of output values. As it is 

an irreversible operation (visual information is lost), quantization results in lossy data  compression. 

 

 

Fidelity criterion. 
 

The removal of psychovisually redundant data results in a loss of real or quantitative visual 

information. Because information of interest may be lost, a repeatable or reproducible means of 

quantifying the nature and extent of information loss is highly desirable. Two general classes of 

criteria are used as the basis for such an assessment: 

A) Objective fidelity criteria and 
 

B) Subjective fidelity criteria. 
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When the level of information loss can be expressed as a function of the original or input image and 

the compressed and subsequently decompressed output image, it is said to be based on an objective 

fidelity criterion. A good example is the root-mean-square (rms) error between an input and output 

image. Let f(x, y) represent an input image and let f(x, y) denote an estimate or approximation of 

f(x, y) that results from compressing and  subsequently  decompressing  the input. For any value of 

x and y, the error e(x, y) between f (x, y) and f^ (x, y) can be defined  as 
 

 

so that the total error between the two images is 
 

 

where the images are of size M X N. The root-mean-square error, erms, between f(x, y) and f^(x, 

y) then is the square root of the squared error averaged over the M X N array,  or 
 

 

A closely related objective fidelity criterion is the mean-square signal-to-noise ratio of the 

compressed-decompressed image. If f^ (x, y) is considered to be the sum of the original image   f(x, 

y) and a noise signal e(x, y), the mean-square signal-to-noise ratio of the output image,  denoted 

SNRrms, is 
 

The rms value of the signal-to-noise ratio, denoted SNRrms, is obtained by taking the square root  of 

Eq. above. 
 

Although objective fidelity criteria offer a simple and convenient mechanism for 

evaluating information loss, most decompressed images ultimately are viewed by humans. 

Consequently, measuring image quality by the subjective evaluations of a human observer often   is 

more appropriate. This can be accomplished by showing a "typical" decompressed image to an 

appropriate cross section of viewers and averaging their evaluations. The evaluations may be  made 

using an absolute rating scale or by means of side-by-side comparisons of f(x, y) and f^(x, y). 
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Image compression models. 
 

 
Fig. shows, a compression system consists of two distinct structural blocks: an encoder and a 

decoder. An input image f(x, y) is fed into the encoder, which creates a set of symbols from the 

input data. After transmission over the channel, the encoded representation is fed to the decoder, 

where a reconstructed output image f^(x, y) is generated. In general, f^(x, y) may or may not be   an 

exact replica of f(x, y). If it is, the system is error free or information preserving; if not, some level 

of distortion is present in the reconstructed image. Both the encoder and decoder shown in Fig. 

consist of two relatively independent functions or subblocks. The encoder is made up of    a source 

encoder, which removes input redundancies, and a channel encoder, which increases the noise 

immunity of the source encoder's output. As would be expected, the decoder includes a channel 

decoder followed by a source decoder. If the channel between the encoder and decoder     is noise 

free (not prone to error), the channel encoder and decoder are omitted, and the general encoder and 

decoder become the source encoder and decoder,  respectively. 
 

 

Fig. A general compression system model 
 

 
 

The Source Encoder and Decoder: 
 

The source encoder is responsible for reducing or eliminating any coding, interpixel, or psychovisual 

redundancies in the input image. The specific application and associated fidelity requirements 

dictate the best encoding approach to use in any given situation. Normally, the approach can be 

modeled by a series of three independent operations. As Fig. (a) shows, each operation is designed 

to reduce one of the three redundancies. Figure (b) depicts the corresponding source decoder. In the 

first stage of the source encoding process, the mapper transforms the input data into a (usually 

nonvisual) format designed to reduce interpixel redundancies in the input image. This operation 

generally is reversible and may or may not   reduce directly the amount of data required to represent 

the image. 
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Fig. (a) Source encoder and (b) source decoder model 
 

Run-length coding is an example of a mapping that directly results in data compression in this initial 

stage of the overall source encoding process. The representation of an image by a set of transform 

coefficients is an example of the opposite case. Here, the mapper transforms the image into an array 

of coefficients, making its interpixel redundancies more accessible for compression  in later stages 

of the encoding process. 

The second stage, or quantizer block in Fig.  (a), reduces the accuracy 

of the mapper's output in accordance with some preestablished fidelity criterion. This stage reduces 

the psychovisual redundancies of the input image. This operation is irreversible. Thus it must be 

omitted when error-free compression is  desired. 

In the third and final stage of the source encoding process, the symbol  coder 

creates a fixed- or variable-length code to represent the quantizer output and maps the  output in 

accordance with the code. The term symbol coder distinguishes this coding operation from the 

overall source encoding process. In most cases, a variable-length code is used  to represent the 

mapped and quantized data set. It assigns the shortest code words to the most frequently occurring 

output values and thus reduces coding redundancy. The  operation,  of  course, is reversible. Upon 

completion of the symbol coding step, the input image has been processed to remove each of the 

three redundancies. 

Figure (a) shows the source encoding process as three successive operations, but all three operations 

are not necessarily included in every compression system. Recall, for example, that    the quantizer 

must be omitted when error-free compression is desired. In addition, some compression techniques 

normally are modeled by merging blocks that are physically separate in 
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Fig. (a). In the predictive compression systems, for instance, the mapper and quantizer are  often 

represented by a single block, which simultaneously performs both  operations. 

The source decoder shown in Fig. (b) contains only two components: a symbol 

decoder and an inverse mapper. These blocks perform, in reverse order, the inverse operations of 

the source encoder's symbol encoder and mapper blocks. Because quantization results in irreversible 

information loss, an inverse quantizer block is not included in the general source decoder model 

shown in Fig. (b). 

 

 

The Channel Encoder and Decoder: 
 

The channel encoder and decoder play an important role in the overall  encoding-decoding  process 

when the channel of Fig.  is noisy or prone to error. They are designed to reduce the impact of 

channel noise by inserting a controlled form of redundancy into the source encoded  data. As the 

output of the source encoder contains little redundancy, it would be highly sensitive  to transmission 

noise without the addition of this "controlled  redundancy."  One of the most  useful channel 

encoding techniques was devised by R. W. Hamming (Hamming [1950]). It is based on appending 

enough bits to the data being encoded to ensure that some minimum number of bits must change 

between valid code words. Hamming showed, for example, that if 3 bits of redundancy are added to 

a 4-bit word, so that the distance between any two valid code words is     3, all single-bit errors can 

be detected and corrected. (By appending additional  bits  of  redundancy, multiple-bit errors can be 

detected and corrected.) The 7-bit Hamming (7, 4) code word h1, h2, h3…., h6, h7 associated with a 

4-bit binary number b3b2b1b0   is 

 

 

where Ⓧ  denotes the exclusive OR operation. Note that bits h1, h2, and h4 are even- parity bits   for 

the bit fields b3 b2 b0, b3b1b0, and b2b1b0, respectively. (Recall that a string of binary bits has even 

parity if the number of bits with a value of 1 is even.) To decode a Hamming encoded   result, the 

channel decoder must check the encoded value for odd parity over the bit fields in  which even parity 

was previously established. A single-bit error is indicated by a nonzero parity word c4c2c1, where 

ECE/LIET C402 DIP NOTES Sudheer Asst Prof ECE Dept



 
 

 
 

If a nonzero value is found, the decoder simply complements the code word  bit  position  indicated 

by the parity word. The decoded binary value is then extracted from the corrected code word as 

h3h5h6h7. 

 

Method of generating variable length codes with an example. 
 

 

Variable-Length Coding: 
 

The simplest approach to error-free image compression is to reduce only coding redundancy. Coding 

redundancy normally is present in any natural binary encoding of the gray levels in an image. It can 

be eliminated by coding the gray levels. To do so requires construction of a variable-length code 

that assigns the shortest possible code words to the most  probable gray levels. Here, we examine 

several optimal and near optimal techniques for constructing such a  code. These techniques are 

formulated in the language of information theory. In practice, the source symbols may be either the 

gray levels of an image or the output of a gray-level mapping operation (pixel differences, run 

lengths, and so on). 
 

Huffman coding: 
 

The most popular technique for removing coding redundancy is due to Huffman  (Huffman [1952]). 

When coding the symbols of an information source individually, Huffman coding yields the smallest 

possible number of code symbols per source symbol. In terms  of  the noiseless coding theorem, the 

resulting code is optimal for a fixed value of n, subject to the constraint that the source symbols be 

coded one at a time. 

The first step in Huffman's approach is to create a series of source reductions by ordering the 

probabilities of the symbols under consideration and combining the lowest probability symbols into 

a single symbol that replaces them in the next source reduction. Figure 4.1 illustrates this process 

for binary coding (K-ary Huffman codes can also be constructed). At the far left, a hypothetical set 

of source symbols and their probabilities are ordered from top to bottom in terms of decreasing 

probability values. To form the first source reduction, the bottom two   probabilities, 

0.06 and 0.04, are combined to form a "compound symbol" with probability 0.1. This compound 

symbol and its associated probability are placed in the first source reduction column so that the 
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probabilities of the reduced source are also ordered from the most to the least probable. This 

process is then repeated until a reduced source with two symbols (at the far right) is  reached. 

The second step in Huffman's procedure is to code each reduced source, 

starting with the smallest source and working back to the original source. The minimal length binary 

code for a two-symbol source, of course, is the symbols 0 and 1. As Fig. 4.2 shows, these symbols 

are assigned to the two symbols on the right (the assignment is arbitrary; reversing the order of the 

0 and 1 would work just as well). As the reduced source symbol with probability 0.6 was generated 

by combining two symbols in the reduced source to its left, the 0 used to code it is now assigned to 

both of these symbols, and a 0 and 1 are  arbitrarily 
 

 

Fig. Huffman source reductions. 
 

 

 

Fig. Huffman code assignment procedure. 
 

appended to each to distinguish them from each other. This operation is then repeated for each 

reduced source until the original source is reached. The final code appears at the far left in Fig. 

. The average length of this code is 
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and the entropy of the source is 2.14 bits/symbol. The resulting Huffman code efficiency is    0.973. 

Huffman's procedure creates the optimal code for a set of symbols and probabilities subject to     the 

constraint that the symbols be coded one at a time. After the code has been created, coding and/or 

decoding is accomplished in a simple lookup table manner. The code itself is an instantaneous 

uniquely decodable block code. It is called a block code because each  source symbol is mapped 

into a fixed sequence of code symbols. It is instantaneous, because each code word in a string of 

code symbols can be decoded without referencing succeeding symbols. It is uniquely decodable, 

because any string of code symbols can be decoded in only one way. Thus, any string of Huffman 

encoded symbols can be decoded by examining the individual symbols of the string in a left to right 

manner. For the binary code of Fig. 4.2, a left-to-right scan of the encoded string 010100111100 

reveals that the first valid code word is 01010, which is the code  for symbol a3 .The next valid code 

is 011, which corresponds to symbol a1. Continuing in this manner reveals the completely decoded 

message to be  a3a1a2a2a6. 

 

 
Arithmetic encoding process with an example. 

 

 
Arithmetic coding: 

 

Unlike the variable-length codes described previously, arithmetic coding generates  nonblock codes. 

In arithmetic coding, which can be traced to the work of Elias, a one-to-one  correspondence between 

source symbols and code words does not exist. Instead, an entire sequence of source symbols (or 

message) is assigned a single arithmetic code word. The code word itself defines an interval of real 

numbers between 0 and 1. As the number of symbols in the message increases, the interval used to 

represent it becomes smaller and the number of  information units (say, bits) required to represent 

the interval becomes larger. Each symbol of the message reduces the size of the interval in 

accordance with its probability  of  occurrence.  Because the technique does not require, as does 

Huffman's approach, that each source symbol translate into an integral number of code symbols 

(that is, that the symbols be coded one at a  time), it achieves (but only in theory) the bound 

established by the noiseless coding  theorem. 
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Fig. Arithmetic coding procedure 
 

 
 

Figure illustrates the basic arithmetic coding process. Here, a five-symbol sequence or message, 

a1a2a3a3a4, from a four-symbol source is coded. At the start of the coding process, the message is 

assumed to occupy the entire half-open interval [0, 1). As Table shows, this  interval is initially 

subdivided into four regions based on the probabilities of each source symbol. Symbol ax, for 

example, is associated with subinterval [0, 0.2). Because it is the first symbol of  the message being 

coded, the message interval is initially narrowed to [0, 0.2). Thus in Fig.  [0, 0.2) is expanded to the 

full height of the figure and its end points labeled by the values of the narrowed range. The narrowed 

range is then subdivided in accordance with the original source symbol probabilities and the process 

continues with the next message  symbol. 
 

Table  Arithmetic coding example 

 

In this manner, symbol a2 narrows the subinterval to [0.04, 0.08), a3 further narrows it to [0.056, 

0.072),  and  so  on.  The  final  message  symbol,  which  must  be  reserved  as  a  special end-of- 
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message indicator, narrows the range to [0.06752, 0.0688). Of course, any number within this 

subinterval—for example, 0.068—can be used to represent the  message. 

In the arithmetically coded message of Fig. 5.1, three decimal digits are used to 

represent the five-symbol message. This translates into 3/5 or 0.6 decimal digits per source symbol 

and compares favorably with the entropy of the source, which is 0.58 decimal digits or 10-ary 

units/symbol. As the length of the sequence being coded increases,  the  resulting  arithmetic code 

approaches the bound established by the noiseless coding  theorem. 

In practice, two factors cause coding performance to fall short of the bound: (1)   the 

addition of the end-of-message indicator that is needed to separate one message from an-  other; and 

(2) the use of finite precision arithmetic. Practical  implementations  of  arithmetic coding address 

the latter problem by introducing a scaling strategy and a rounding strategy (Langdon and Rissanen 

[1981]). The scaling strategy renormalizes each subinterval to the [0, 1) range before subdividing it 

in accordance with the symbol probabilities. The rounding strategy guarantees that the truncations 

associated with finite precision arithmetic do not prevent the  coding subintervals from being 

represented accurately. 

LZW coding with an example. 

LZW Coding: 
 

The technique, called Lempel-Ziv-Welch (LZW) coding, assigns fixed-length code words to 

variable length sequences of source symbols but requires no a priori knowledge  of  the  probability 

of occurrence of the symbols to be encoded. LZW compression has been integrated into a variety of 

mainstream imaging file formats, including the  graphic  interchange  format (GIF), tagged image 

file format (TIFF), and the portable document format  (PDF). 

LZW coding is conceptually very simple (Welch [1984]). At the onset of the 

coding process, a codebook or "dictionary" containing the source symbols to be coded is 

constructed. For 8-bit monochrome images, the first 256 words of the dictionary are assigned to  the 

gray values 0, 1, 2..., and 255. As the encoder sequentially examines the image's pixels, gray- level 

sequences that are not in the dictionary are placed in algorithmically determined (e.g., the next 

unused) locations. If the first two pixels of the image are white, for instance, sequence “255- 255” 

might be assigned to location 256, the address following the locations reserved for gray levels 0 

through 255. The next time that two consecutive white pixels are encountered, code    word 256, the 

address of the location containing sequence 255-255, is used to represent them. If    a 9-bit, 512-

word dictionary is employed in the coding process, the original (8 + 8) bits that were used to 

represent the two pixels are replaced by a single 9-bit code word. Cleary, the size of the 
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dictionary is an important system parameter. If it is too small, the detection of matching gray- level 

sequences will be less likely; if it is too large, the size of the code words will adversely  affect 

compression performance. 

 

 

Consider the following 4 x 4, 8-bit image of a vertical edge: 
 

 

 

 

 

Table  details the steps involved in coding its 16 pixels. A 512-word dictionary with the following 

starting content is assumed: 

 

 
 

 

 

Locations 256 through 511 are initially unused. The image is encoded by processing its pixels in   a 

left-to-right, top-to-bottom manner. Each successive gray-level value is concatenated with a 

variable—column 1 of Table 6.1 —called the "currently recognized sequence." As can be seen,  this 

variable is initially null or empty. The dictionary is searched for each concatenated sequence and if 

found, as was the case in the first row of the table, is replaced by the newly concatenated  and 

recognized (i.e., located in the dictionary) sequence. This was done in column 1 of row  2. 
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Table  LZW coding example 
 

No output codes are generated, nor is the dictionary altered. If the concatenated sequence is not 

found, however, the address of the currently recognized sequence is output as the next encoded 

value, the concatenated but unrecognized sequence is added to the dictionary, and the currently 

recognized sequence is initialized to the current pixel value. This occurred in row 2 of the table. The 

last two columns detail the gray-level sequences that are added to the dictionary when scanning the 

entire 4 x 4 image. Nine additional code words are defined. At the conclusion of coding, the 

dictionary contains 265 code words and the LZW algorithm has  successfully  identified several 

repeating gray-level sequences—leveraging them to reduce the original 128-bit image lo 90 bits 

(i.e., 10 9-bit codes). The encoded output is obtained by  reading  the third  column from top to 

bottom. The resulting compression ratio is  1.42:1. 

A unique feature of the LZW coding just demonstrated is that the coding 

dictionary or code book is created while the data are being encoded. Remarkably, an  LZW decoder 

builds an identical decompression dictionary as it decodes simultaneously the encoded data stream. 

. Although not needed in this example, most practical applications require a strategy for handling 

dictionary overflow. A simple solution is to flush or reinitialize the dictionary when  it becomes full 

and continue coding with a new initialized dictionary. A more complex option is 
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to monitor compression performance and flush the dictionary when it becomes poor or unacceptable. 

Alternately, the least used dictionary entries can be tracked and replaced when necessary. 

 

 

Concept of bit plane coding method. 
 

 

Bit-Plane Coding: 
 

An effective technique for reducing an image's interpixel redundancies is to process the image's  bit 

planes individually. The technique, called bit-plane coding, is based on the concept of decomposing 

a multilevel (monochrome or color) image into a series of binary images and compressing each 

binary image via one of several well-known binary compression  methods. 

Bit-plane decomposition: 
 

The gray levels of an m-bit gray-scale image can be represented in the form of the base 2 polynomial 
 

 

Based on this property, a simple method of decomposing the image into a collection of binary 

images is to separate the m coefficients of the polynomial into m 1-bit bit planes. The zeroth-  order 

bit plane is generated by collecting the a0 bits of each pixel, while the (m - 1) st-order bit plane 

contains the am-1, bits or coefficients. In general, each bit plane is numbered from 0 to m-1 and is 

constructed by setting its pixels equal to the values of the appropriate bits or polynomial coefficients 

from each pixel in the original image. The inherent disadvantage of this approach is that small 

changes in gray level can have a significant impact on the complexity of the bit planes. If a pixel of 

intensity 127 (01111111) is adjacent to a pixel of intensity 128 (10000000), for instance, every bit 

plane will contain a corresponding 0 to 1 (or 1 to 0) transition. For example,    as the most significant 

bits of the two binary codes for 127 and 128 are different, bit plane 7 will contain a zero-valued 

pixel next to a pixel of value 1, creating a 0 to 1 (or 1 to 0) transition at    that point. 

An alternative decomposition approach (which reduces the effect of small gray-level 

variations) is to first represent the image by an m-bit Gray code. The m-bit Gray code gm-1...  g2g1g0 

that corresponds to the polynomial in Eq. above can be computed  from 
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Here, Ⓧ denotes the exclusive OR operation. This code has the unique property that successive code 

words differ in only one bit position. Thus, small changes in gray level are less likely to affect all m 

bit planes. For instance, when gray levels 127 and 128 are adjacent, only the 7th bit plane will 

contain a 0 to 1 transition, because the Gray codes that correspond to 127 and 128 are 11000000 and 

01000000, respectively. 

 

Lossless predictive coding. 
 

 

Lossless Predictive Coding: 
 

The error-free compression approach does not require decomposition of an image into  a  collection 

of bit planes. The approach, commonly referred to as lossless predictive coding, is  based on 

eliminating the interpixel redundancies of closely spaced pixels  by  extracting  and coding only the 

new information in each pixel. The new information of a pixel is defined as the difference between 

the actual and predicted value of that pixel. 

Figure 8.1 shows the basic components of a lossless  predictive  coding  system. 

The system consists of an encoder and a decoder, each containing an identical predictor. As each 

successive pixel of the input image, denoted fn, is introduced to the  encoder,  the  predictor generates 

the anticipated value of that pixel based on some number of past inputs. The output of the predictor 

is then rounded to the nearest integer, denoted f^n and used to form the difference or prediction error 

which is coded using a variable-length code (by the  symbol  encoder) to generate the next element 

of the compressed data  stream. 
 

ECE/LIET C402 DIP NOTES Sudheer Asst Prof ECE Dept



 
 

 
 

Fig. A lossless predictive coding model: (a) encoder; (b)  decoder 
 

 
 

The decoder of Fig. 8.1 (b) reconstructs en from the received variable-length code words and 

performs the inverse operation 
 

 

Various local, global, and adaptive methods can be used to generate f^n. In most cases, however, the 

prediction is formed by a linear combination of m previous pixels. That  is, 
 

 

where m is the order of the linear predictor, round is a function used to denote the rounding or 

nearest integer operation, and the αi, for i = 1,2,..., m are prediction coefficients. In raster scan 

applications, the subscript n indexes the predictor outputs in accordance with their time of 

occurrence. That is, fn, f^n and en in Eqns. above could be replaced  with  the  more  explicit notation 

f (t), f^(t), and e (t), where t represents time. In other cases, n is used as an index on the spatial 

coordinates and/or frame number (in a time sequence of images) of an image.  In  1-D linear 

predictive coding, for example, Eq. above can be written as 
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where each subscripted variable is now expressed explicitly as a function of spatial coordinates x 

and y. The Eq. indicates that the 1-D linear prediction f(x, y) is a function of the previous pixels  on 

the current line alone. In 2-D predictive coding, the prediction is a function of the previous pixels in 

a left-to-right, top-to-bottom scan of an image. In the 3-D case, it is based on these   pixels and the 

previous pixels of preceding frames. Equation above cannot be evaluated for the first m pixels of 

each line, so these pixels must be coded by using other means (such as a   Huffman code) and 

considered as an overhead of the predictive coding process. A similar  comment applies to the 

higher-dimensional cases. 

 

 

 

 

Lossy predictive coding. 
 

 

Lossy Predictive Coding: 
 

In this type of coding, we add a quantizer to the lossless predictive model and examine the resulting 

trade-off between reconstruction accuracy and compression performance. As Fig.9 shows, the 

quantizer, which absorbs the nearest integer function of the error-free encoder, is inserted between 

the symbol encoder and the point at which the prediction error is formed. It   maps the prediction 

error into a limited range of outputs, denoted e^n which establish the amount of compression and 

distortion associated with lossy predictive  coding. 
 

 

Fig.   A lossy predictive coding model: (a) encoder and (b)  decoder. ECE/LIET C402 DIP NOTES Sudheer Asst Prof ECE Dept



In order to accommodate the insertion of the quantization step, the error-free encoder of figure must 

be altered so that the predictions generated by the encoder and decoder are equivalent. As Fig.9 (a) 

shows, this is accomplished by placing the lossy encoder's predictor within a feedback loop, where 

its input, denoted f˙n, is generated as a function of past predictions and the corresponding quantized 

errors. That is, 
 

 

This closed loop configuration prevents error buildup at the decoder's output. Note from Fig. 9 

(b) that the output of the decoder also is given by the above Eqn. 
 

 
 

Optimal predictors: 
 

The optimal predictor used in most predictive coding applications minimizes the encoder's mean- 

square prediction error 
 

 

subject to the constraint that 
 

 

and 
 

 

That is, the optimization criterion is chosen to minimize the mean-square prediction error, the 

quantization error is assumed to be negligible (e˙n ≈ en), and the prediction is constrained to a  linear 

combination of m previous pixels.1 These restrictions are not essential, but they simplify  the 

analysis considerably and, at the same time, decrease the computational complexity of the predictor. 

The resulting predictive coding approach is referred to as differential pulse code modulation 

(DPCM). 
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Block diagram about transform coding  system. 
 

Transform Coding: 
 

All the predictive coding techniques operate directly on the pixels of an image and thus are   spatial 

domain methods. In this coding, we consider compression techniques that are based on modifying 

the transform of an image. In transform coding, a reversible, linear transform (such as the Fourier 

transform) is used to map the image into a set of transform coefficients, which  are  then quantized 

and coded. For most natural images, a significant number of the coefficients have small magnitudes 

and can be coarsely quantized (or discarded entirely) with little image  distortion. A variety of 

transformations, including the discrete Fourier transform (DFT), can be used to transform the image 

data. 
 

 

Fig. A transform coding system: (a) encoder; (b)  decoder. 
 
 

Figure  shows a typical transform coding system. The decoder implements the  inverse  sequence of 

steps (with the exception of the quantization function) of the encoder,  which  performs four 

relatively straightforward operations: subimage decomposition, transformation, quantization, and 

coding. An N X N input image first is subdivided into subimages of size n X   n, 

which are then transformed to generate (N/n) 
2 
subimage transform arrays, each of size n X n. 

The goal of the transformation process is to decorrelate the pixels of each subimage, or to pack    as 

much information as possible into the smallest number of transform coefficients. The quantization 

stage then selectively eliminates or more coarsely quantizes the coefficients that  carry the least 

information. These coefficients have the smallest impact on  reconstructed  subimage quality. The 

encoding process terminates by coding (normally using a variable-length code) the quantized 

coefficients. Any or all of the transform encoding steps can be adapted to 

local image content, called adaptive transform coding, or fixed for all subimages, called nonadaptive 

transform coding. 
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 Image Pyramid 

What is the Image Pyramid? Of course it has nothing to do with the ancient  Egypt. Image 

Pyramid-formally called “pyramid representation of image”- is a image and signal processing 

technique, to represent a single image using a set of cascading images. Image pyramid provides 

many useful properties for many application, such as noise reduction, image analysis, image 

enhancement, etc. 

Why we need these Pyramids? 

Images that we can see in everyday life are represented using  so-called Spatial domain, which 

is actually the things that most people will think of  when talk about images. This spatial domain 

represents images by the luminance values of each image’s location. 

There are many processing operations that can be done with the spatial domain, such as 

basic low-pass filter and high-pass filter, adaptive filter, median filter, and many other things end 

with filter. Normally most of these filters work by using local information from each location. 

However, since images mostly contain complex informations, sometimes they are hard works to 

process in spatial domain. 

  

 

 

 

 

 

 

 

 

 

 

 

Lena in Spatial domain 

 

There is another popular type of image representation known as the frequency domain. If we 

perform the Fast Fourier Transform to the image, we will get the totally different image called 

frequency spectrum.  
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For those who didn’t know about the frequency domain, let’s simply explain like this: From the 

signal theory, every signal (including image, of course) can be express as a linear combination 

of a set of various-frequency sine and cosine signals. The process to transform from normal 

signal to frequency domain is called Fourier Transformation, and the transformed result – in this 

case, frequency spectrum- is actually a set of coefficients of each sine and cosine signals. In our 

case, low frequency represents smooth details, shapes, and colour in the image, and high 

frequency represents fine details and noise in the image. 

The introducing of frequency domain make more possibility for image processing. For example, 

we can just discard the high frequency responses to remove most noises from the image! Sounds 

great except that the beautiful object edge also gone with the noises. A major problem of 

frequency domain is that it will mix all frequency from every object in the image together, 

formally called “loss of locality”, and most of the time we don’t want to mix our faces’ beautiful 

details with the detail of the grass in background. 

 

 

 

 

 

 

 

 

 

 

 

 

Lena in frequency domain 

In order to get the advantages of both spatial domain and frequency domain, the new 

representation is invented and called spatial-frequency domain. This new domain give us the 

ability to deal with separate frequency easily as well as preserve the locality of the 

information.  Our image pyramid is also in this domain. 
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What is exactly this Pyramid? 

 The image pyramid is actually a representation of the image by a set of the different 

frequency-band images . For example, if we put our original Lena image to construct her 

pyramid, we may get, for simplicity, 3 layers of pyramid. The first image will represent low 

frequency band (smooth detail), the second image will represent middle frequency band (some 

detail), and the last image will represent high frequency band (finest detail). Image Pyramid is 

also called “multi-scale” and “multi-resolution” because of this characteristic. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example of Gaussian Pyramid Example of Laplacian Pyramid 
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How to construct this Pyramid? 

To construct the pyramid, we have 2 options here. Since we know that the each layer of pyramid 

represents a different band of image’s frequency, we may use multiple filters, a filter for each 

band, to convolute with the image. Some of us may  already known that just only a single time 

of convolution will need some effort, do not try to imagine multiple time of it. ( Convolution 

literally means “things that extremely complicated and difficult to follow”) 

Another option is , according to some great-mind persons, instead of using multiple filters to the 

image, we can use multiple image to convolute with a single filter! The best part is these multiple 

images are obtains by reducing size of the original image. This way is much better than the first 

option. So we will use this technique to construct Lena’s pyramid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How to construct Guassian Pyramid 
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Comparison of each layers in the same size 

We can notice that each pyramid layer is constructed by applying the low-pass filter to the upper 

part and then reduce its size by the factor of 0.5. This process is called “Reduce 

operation“.  Because each layer of this pyramid is a low-pass filtered image with a different filter 

range, this pyramid is called “Gaussian Pyramid” or the pyramid of low-pass filtered image. 

The Gaussian Pyramid itself still doesn’t have much usefulness. However we can use it to 

construct another pyramid called “Laplacian Pyramid” or the pyramid of band-pass filtered 

image. Each layer of this pyramid is made from subtract two consecutive layer from Gaussian 

Pyramid together. In order to subtract, the lower later need to be upsampled to be the same size 

to the upper layer, and this process called “Expand operation“. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How to construct Laplacian Pyramid 

This Laplacian Pyramid is the true useful member of the image pyramid. Each layer of this 

pyramid is the band-pass image, which means we can now do some things to the specific 

frequency just like in the frequency domain. We also see that even after its frequencies are shown, 

the local features of the image are still there. By using this pyramid we can get the so-called 

spatial-frequency domain as explained in the beginning. 
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After we finish our work with this pyramid and need our Lena back, we can just sum every layer 

of the Laplacian Pyramid together so that we can get back the original image (or result image 

after we have done something). This process is called “Reconstruction“ 

Reconstruction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In conclusion, the image pyramid is another technique to represent the image. Unlike another 

domain such as spatial domain and frequency domain, because the image pyramid, which is the 

spatial-frequency domain, have the advantages of both domain. Moreover, the computation of 

image pyramid is much easier than that of the frequency domain 

Subband coding & HAAR TRANSFORMS MULTI RESOLUTION EXPRESSIONS:  

 HAAR TRANSFORM: 

The Haar transform is both seperable and symmetric and can be expressed in matrix form 

T = HFH 

Where F is an N X N image matrix, H  is an N XN transformation matrix, and T  is the resulting 

N X N transform. For the Haar transform, transformation matrix H  contains the Haar basis 

function, ℎ𝑘(Z).  
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They are defined over the continuous, closed interval      z ϵ [0,1] for k=0,1,2,...., N – 1, where  

N = 2𝑛. To generate  H, consider the integer k such that k = 2𝑝 + q – 1, where 0 ≤ p ≤ n – 1, q = 

0 or 1 for p = 0, and 1 ≤ q ≤ 2𝑝 for       p ≠ 0. Then the Haar basis function are  

ℎ0(z) = ℎ00(z) = 
1

√𝑁
,           z ϵ [0, 1] 

and 

ℎ𝑘(z) = ℎ𝑝𝑞(z) = 
1

√𝑁

{
 

 2
𝑝

2                  
𝑞−1

2𝑝
≤ 𝑧 <

𝑞−0.5

2𝑝

−2
𝑝

2                
𝑞−0.5

2𝑝
≤ 𝑧 <

𝑞

2𝑝

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, z ϵ [0, 1]}
 

 

 

The ith row of an N X N Haar transformation matrix contains the elements of ℎ𝑖(z) for z = 0/N, 

1/N, 2/N,........, ( N – 1)/N. If N = 4, for example, k,q, and p assume the values 

k p q 

0 0 0 

1 0 1 

2 1 1 

3 1 2 

and the 4 X 4 transformation matrix, 𝐇𝟒, is 

𝐇𝟒  = 
1

√4
[

   1                   1            1                1

    1                 1        − 1           − 1

√2          − √2           0              0

0                  0         √2        − √2

] 

In a similar manner, the 2 X 2 transformation matrix, 𝐇𝟐, is 

𝐇𝟐 = 
1

√2
 [
1          1
1     − 1

] 

 

MULTI RESOLUTION EXPANSIONS: 

In Multi Resolution Analysis (MRA), a scaling function is used to create a series of 

approximations of a function or image, each differing by a factor of 2 from its neighbouring 

approximations. Additional functions, called wavelets, are then used to encode the difference in 

information between adjacent approximations.  

1. Series expansion: 

A signal or function f (x) can often be better analyzed as a linear combination of expansion 

functions. 
f(x) = ∑ ∝𝑘𝑘 𝑘(x) 

where k is an integer index of the finite or infinite sum, the ∝𝑘 are real valued expansion 

coefficients, and the 𝑘(x) are real- valued expansion functions.  
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If the expansion is unique, there is one set of ∝𝑘 for any given f(x), the 𝑘(x) are called 

basis functions, and the expansion set, { 𝑘(x)}, is called a basis for the class of 

functions. The expressible functions form a function space that is referred to as the closed 

span of the expansion set V. 

 

V = Spk an{ k(x)}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

 

2. Scaling Expansion: 

Consider the set of expansion functions composed of integer translations and binary scalings 

of the real, square-integrable function (x); that is, the set { 𝑗,𝑘(x)}  where 

𝑗,𝑘(x) = 2𝑗/2  (2𝑗x – k) 

For all j, k ϵ Z and  (x) ϵ 𝐿2(R). Here, k determines the position of  𝑗,𝑘(x) along the x-

axis , j determines  𝑗,𝑘(x)’s width and 2𝑗/2 controls its height or amplitude. Because 

the shape of 𝑗,𝑘(x) changes with j,  (x) is called a scaling function. 

3. Wavelet Functions: 

A wavelet function ᴪ(x) together with its integer translates and binary scaling, spans the 

difference between any two adjacent scaling subspaces, 𝑉𝑗 and 𝑉𝑗+1 . This situation is 

illustrated graphically in Fig. 5. The set {ᴪ𝑗,𝑘(x)} of wavelets is defined as  

ᴪ𝑗,𝑘(x) =  2𝑗/2 ᴪ (2𝑗x – k) 

  
Fig. 5: The relationship between scaling and wavelet function spaces. 

For all k ϵ Z that spans the 𝑊𝑗 spaces in the figure. The scaling functions can be written as  

𝑊𝑗  = Spk an{ ᴪj,k(x)}
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

 

Any wavelet function can be expressed as a weighted sum of shifted, double-resolution 

scaling functions. 

ᴪ(x) = ∑ ℎᴪ(𝑛)√2𝑛 (2x –  n)  
where the ℎᴪ(n) are called the wavelet function coefficients and ℎᴪis called the wavelet 

vector. 
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WAVELET TRANSFORMS IN ONE DIMENSION: 

 

 

1. Wavelet Series Expansions: 

The wavelet series expansion of function f(x) ϵ 𝐿2(R) relative to wavelet ᴪ(x) and scaling 

function (x). 

f(x) =∑ 𝑐𝑗0(𝑘)𝑘 𝑗0,k(x) + ∑ ∑ 𝑑𝑗(𝑘)𝑘
∞
𝑗=𝑗0 

ᴪ𝑗,k(x)                             ...........eq.(1) 

where 𝑗0 is an arbitrary starting scale  

The 𝑐𝑗0(𝑘)’s  are normally called the approximation or scaling coefficients;  

The 𝑑𝑗(𝑘)’s are referred to as the detail or wavelet coefficients.  This is because the first sum 

in eq.(1) uses scaling function to provide an approximation of f(x) at scale 𝑗0. For each 

higher scale j ≥ 𝑗0 in the second sum is added to the approximation to provide increasing 

detail. If the expansion functions forms an orthogonal basis or tight frame, which is often 

the case, the expansion coefficients are calculated. 

𝑐𝑗0(𝑘) =  〈𝑓(𝑥), 𝑗0,k(x)〉 = ∫𝑓(𝑥) 𝑗0,k(x) dx                           ......eq.(2) 

and 𝑑𝑗(𝑘)  =  〈𝑓(𝑥), ᴪ𝑗,k(x)〉 = ∫𝑓(𝑥) ᴪ𝑗,k(x) dx                        ......eq.(3) 

2. The Discrete Wavelet Transform 

The wavelet series expansion maps a function of a continuous variable into a sequence of 

coefficients. If the function being expanded is a sequence of numbers, like samples of a 

continuous function f(x), the resulting coefficient are called the discrete wavelet 

transform  (DWT). 

 

 

 

For this case, the series expansion defined through Eqs (1) through (3) becomes the DWT 

transform pair. 

𝑊 (𝑗0, k) = 
1

√𝑀
 ∑ 𝑓(𝑥)𝑥 𝑗0,k(x) 

𝑊ᴪ(j, k) = 
1

√𝑀
 ∑ 𝑓(𝑥)𝑥 ᴪ𝑗,k(x) 

For  j ≥ 𝑗0 and 

f(x) = 
1

√𝑀
 ∑ 𝑊 (𝑗0, k) 𝑘 𝑗0,k(x) + 

1

√𝑀
∑ ∑ 𝑊ᴪ(j, k)𝑘
∞
𝑗=𝑗0 

ᴪ𝑗,k(x)   

Here, f(x), 𝑗0,k(x), and ᴪ𝑗,k(x) are functions of the discrete variable  x = 0,1,2,.....,M-1. 
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3. The Continuous Wavelet Transform: 

The natural extension of the discrete wavelet transform is the continuous wavelet transform 

(CWT), which transforms a continuous function into a highly redundant function of two 

continuous variables – translation and scale. The resulting transform is easy to interpret 

and valuable for time-frequency analysis.  

 The continuous wavelet transform of a continuous, square-integrable function, f(x), 

relative to a real-valued wavelet,  ᴪ (x), is 

𝑊ᴪ(s, τ)= ∫ 𝑓(𝑥)
∞

−∞
ᴪ𝑠,k(x)dx 

 

Where ᴪ𝑠,τ(x) = 
1

√𝑠
 ᴪ (

𝑥−𝜏

𝑠
) 

 And s and τ are called scale  and  translation  parameters.   

The inverse continuous wavelet transform is given as 

 

f(x) = 
1

𝐶ᴪ
 ∫ ∫ 𝑊ᴪ  

∞

−∞

∞

0
(s, τ)

ᴪ𝑠,τ(x) 

𝑠2
 dτ ds 

 

Where 

𝐶ᴪ = ∫
|ᴪ(𝑢)|2

|𝑢|

∞

−∞
 du 

And ᴪ(u) is the fourier transform of ᴪ(x) 

 

THE FAST WAVELET TRANSFORM: 

The fast wavelet transform (FWT) is computationally efficient implementation of the discrete 

wavelet transform (DWT) that exploits a relationship between the coefficients of the DWT at 

adjacent scales. The FWT resembles the two band subband coding scheme. 

 
 Fig.6: An FWT analysis bank. 

The Fig.6 shows the FWT analysis filter bank and this filter bank can be “iterated” to create 

multistage structures for computing DWT coefficients at two or more successive scales. 
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Fig. 7: A two stage or two scale FWT analysis bank 

For example, Fig.7 shows a two stage filter bank for generating the coefficients at the two 

highest scales of the transform. Note that the highest scale coefficient are assumed to be samples 

of the function itself. That is 𝑊 (J, n) = f(n), where J is the highest scale. 

 

 

 

 

The first filter bank in Fig.7 splits the original function into a low pass, approximation 

component, which corresponds to scaling coefficients 𝑊 (J - 1, n), and a high pass, detail 

component, corresponds to coefficients 𝑊ᴪ(J – 1, n). This is graphically illustrates in Fig.8, 

where the scaling space 𝑉𝐽 is split into wavelet subspace 𝑊𝐽−1 and scaling sub space 𝑉𝐽−1.  

 
Fig. 8: Frequency splitting characteristics of Fig.7 

The spectrum of the original function is split into two half-band components. The second filter 

bank of Fig. 8 splits the spectrum and subspace 𝑉𝐽−1, the lower half-band, into quater-band 

subspaces 𝑊𝐽−2 and  𝑉𝐽−2 with corresponding DFT coefficients 𝑊ᴪ(J – 1, n) and 𝑊 (J - 1, 

n), respectively. The two-stage filter bank in Fig. 7 is easily extended to any number of scales. 
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WAVELET TRANSFORM IN TWO DIMENSIONS: 

The one dimensional transforms are easily extended to two-dimensional functions like images. 

In two dimensions, a two dimensional scaling function, (x,y), and three two-dimensional 

wavelets, ᴪ𝐻(x,y),  ᴪ𝑉(x,y), and  ᴪ𝐷(x,y), are required. Each is the product of a one-dimensional 

scaling function  and corresponding wavelet ᴪ. Excluding products that produce one-

dimensional results, like (x) ᴪ(x), the four remaining products produce the seperable scaling 

functions. 

 
And seperable, “directional sensitive” wavelets 

 ᴪ𝐻(x, y) = ᴪ(x)  (y) 

 ᴪ𝑉(x, y) =  (x) ᴪ(y) 

 ᴪ𝐷(x, y) = ᴪ (x) ᴪ(y) 

 
These wavelets measure functional variations ( intensity or gray-level variations for images) 

along different directions:  ᴪ𝐻 measures variations along columns ( for example: horizontal 

edges),  ᴪ𝑉responds to variations along rows (like vertical edges), and  ᴪ𝐷corresponds to 

variations along diagonals.  

The directional sensitivity is a natural consequence of the separability imposed by above 

equations; it does not increase the computational complexity of the two-dimensional transform. 

The extension of one dimensional DWT to two dimensions is straightforward method. Consider 

the scaled and translated basis functions: 

𝑗,m,n(x, y) =  2
j/2 (2j x – m, 2j y – n), 

ᴪ𝑗,m,n(x, y) =  2
j/2 ᴪ1(2j x – m, 2j y – n),  i = {𝐻, 𝑉, 𝐷} 

Where index i identifies the directional wavelets. The discrete wavelet transform of function f(x, 

y) of size M X N is 

𝑊 (𝑗0, m, n) = 
1

√𝑀𝑁
 ∑ ∑ 𝑓(𝑥, 𝑦) 𝑗0 ,𝑚,𝑛 

𝑁−1
𝑣=0

𝑀−1
𝑥=0 (𝑥, 𝑦) 

𝑊ᴪ
⃓(j, m, n) = 

1

√𝑀𝑁
 ∑ ∑ 𝑓(𝑥, 𝑦)ᴪ𝑗,𝑚,𝑛

⃓𝑁−1
𝑣=0

𝑀−1
𝑥=0 (𝑥, 𝑦) 

 
f(x, y) is obtained via the inverse discrete wavelet transform. 

f(x, y) = 
1

√𝑀𝑁
 ∑ ∑ 𝑊 (𝑗0, m, n)𝑛𝑚 𝑗0,m,n(𝑥, 𝑦) +          

1

√𝑀𝑁
 ∑ ∑ ∑ ∑ 𝑊ᴪ

⃓(j,m, n)𝑛𝑚
∞
𝑗=𝑗0 ⃓=𝐻,𝑉 ᴪ𝑗,𝑚,𝑛

⃓ (𝑥, 𝑦) 

like the one-dimensional discrete wavelet transform, the two dimensional DWT can be 

implemented using digital filter and down samplers. With separable two dimensional scaling and 

wavelet functions, the one-dimensional FWT of the rows of f(x, y), followed by the one-

dimensional FWT of the resulting columns. 

 

 

 

 

 (x, y)  = (x)  (y) 
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Wavelet Coding: 
 

The wavelet coding is based on the idea that the coefficients of a transform that decorrelates the 

pixels of an image can be coded more efficiently than the original pixels themselves. If the 

transform's basis functions—in this case wavelets—pack most of the  important  visual information 

into a small number of coefficients, the remaining coefficients can be quantized coarsely or 

truncated to zero with little image  distortion. 

Figure 11 shows a typical wavelet coding system. To encode a 2
J 
X 2

J 
image, an analyzing  wavelet, 

Ψ, and minimum decomposition level, J - P, are selected and used to compute the  image's discrete 

wavelet transform. If the wavelet has a complimentary scaling function φ, the   fast wavelet 

transform can be used. In either case, the computed  transform converts a large  portion of the 

original image to horizontal, vertical, and diagonal decomposition coefficients     with zero mean 

and Laplacian-like distributions. 

 

 
 

 

Fig. A wavelet coding system: (a) encoder; (b)  decoder. 
 

Since many of the computed coefficients carry little visual information, they can be  quantized and 

coded to minimize Interco efficient and coding redundancy. Moreover, the quantization can    be 

adapted to exploit any positional correlation across the P decomposition levels. One or more    of 

the lossless coding methods, including run-length, Huffman, arithmetic, and bit-plane coding, can 

be incorporated into the final symbol coding step. Decoding is accomplished by inverting the 

encoding operations—with the exception of quantization, which cannot be reversed exact ly. 

The principal difference between the wavelet-based system and the 

transform coding system is the omission of the transform coder's subimage processing stages. 

Because wavelet transforms are both computationally efficient and inherently local (i.e., their 

basis functions are limited in duration), subdivision of the original image is  unnecessary. 
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UNIT- IV IMAGE SEGMENTAION & MORPHOLOGICAL IMAGE 

PROCESSING  

FUNDAMENTALS 

POINT AND LINE DETECTION  

The derivative operator’s role in segmentation. 

Gradient operators: 
 

First-order derivatives of a digital image are based on various approximations of the 2-D gradient. 

The gradient of an image f (x, y) at location (x, y) is defined as the  vector 
 

It is well known from vector analysis that the gradient vector points in the direction of maximum rate 

of change of f at coordinates (x, y). An important quantity in edge detection is the magnitude of this 

vector, denoted by Af, where 
 

 

This quantity gives the maximum rate of increase of f (x, y) per unit distance in the direction of Af. 

It is a common (although not strictly correct) practice to refer to Af also as the gradient. The 

direction of the gradient vector also is an important quantity. Let α (x, y) represent the direction 

angle of the vector Af at (x, y). Then, from vector analysis, 
 

 

where the angle is measured with respect to the x-axis. The direction of an edge at (x, y) is 

perpendicular to the direction of the gradient vector at that point. Computation of the gradient of  an 

image is based on obtaining the partial derivatives &f/&x and &f/&y at every pixel location.  Let the 

3x3 area shown in Fig. 1.1 (a) represent the gray levels in a neighborhood of an image.  One of the 

simplest ways to implement a first-order partial derivative at point z5 is to use the following Roberts 

cross-gradient operators: 
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These derivatives can be implemented for an entire image by using the masks shown  in  Fig. 1.1(b). 

Masks of size 2 X 2 are awkward to implement because they do not have a clear center.   An approach 

using masks of size 3 X 3 is given by 

 

 
 

 

Fig.1.1 A 3 X 3 region of an image (the z’s are gray-level values) and various masks used to 

compute the gradient at point labeled z5. 
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A weight value of 2 is used to achieve some smoothing by giving more importance to the center 

point. Figures 1.1(f) and (g), called the Sobel operators, and are used to implement these two 

equations. The Prewitt and Sobel operators are among the most used in practice for computing digital 

gradients. The Prewitt masks are simpler to implement than the Sobel masks, but the latter have 

slightly superior noise-suppression characteristics, an important issue when dealing with derivatives. 

Note that the coefficients in all the masks shown in Fig. 1.1 sum to 0, indicating that they give a 

response of 0 in areas of constant gray level, as expected of a derivative  operator. 

The masks just discussed are used to obtain the gradient components Gx and Gy. Computation of the 

gradient requires that these two components be combined. However, this implementation is  not 

always desirable because of the computational burden required by squares and square roots.  An 

approach used frequently is to approximate the gradient by absolute  values: 
 

 

This equation is much more attractive computationally, and it still preserves relative changes in gray 

levels. However, this is not an issue when masks such as the Prewitt and Sobel masks are used to 

compute Gx and Gy. 

It is possible to modify the 3 X 3 masks in Fig. 1.1 so that they have their strongest responses  along 

the diagonal directions. The two additional Prewitt and Sobel masks for detecting discontinuities in 

the diagonal directions are shown in Fig.  1.2. 

ECE/LIET C402 DIP NOTES Sudheer Asst Prof ECE Dept



 
 

 
 

Fig.1.2 Prewitt and Sobel masks for detecting diagonal  edges 
 

 
 

The Laplacian: 
 

The Laplacian of a 2-D function f(x, y) is a second-order derivative defined  as 
 

 

For a 3 X 3 region, one of the two forms encountered most frequently in practice  is 
 

 

 

Fig.1.3 Laplacian masks used to implement Eqns.  above. 
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where the z's are defined in Fig. 1.1(a). A digital approximation including the diagonal neighbors is 

given by 
 

 

 
 

Masks for implementing these two equations are shown in Fig. 1.3. We note from these masks   that 

the implementations of Eqns. are isotropic for rotation increments of 90° and 45°,  respectively. 

 
 

Edge detection. 
 

Intuitively, an edge is a set of connected pixels that lie on the boundary between two regions. 

Fundamentally, an edge is a "local" concept whereas a region boundary, owing to the way it is 

defined, is a more global idea. A reasonable definition of "edge" requires the ability to measure gray-

level transitions in a meaningful way. We start by modeling an edge intuitively. This will  lead us to 

formalism in which "meaningful" transitions in gray levels can be  measured.  Intuitively, an ideal 

edge has the properties of the model shown in Fig. 2.1(a). An ideal edge according to this model is a 

set of connected pixels (in the vertical direction here), each of which  is located at an orthogonal step 

transition in gray level (as shown by the horizontal profile in the figure). 

In practice, optics, sampling, and other image acquisition imperfections yield edges that are 

blurred, with the degree of blurring being determined by factors such as the quality of the image 

acquisition system, the sampling rate, and illumination conditions under which the image   is 

acquired. As a result, edges are more closely modeled as having a "ramp like" profile, such as the 

one shown in Fig.2.1 (b). 
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Fig.2.1 (a) Model of an ideal digital edge (b) Model of a ramp edge. The slope of the ramp is 

proportional to the degree of blurring in the edge. 

 

 

The slope of the ramp is inversely proportional to the degree of blurring in the edge. In  this model, 

we no longer have a thin (one pixel thick) path. Instead, an edge point now is any point contained in 

the ramp, and an edge would then be a set of such points that are connected. The "thickness" of the 

edge is determined by the length of the ramp, as it transitions from an initial to   a final gray level. 

This length is determined by the slope, which, in turn, is determined by the degree of blurring. This 

makes sense: Blurred edges lend to be thick and sharp edges tend to be thin. Figure 2.2(a) shows the 

image from which the close-up in Fig. 2.1(b) was extracted. Figure 2.2(b) shows a horizontal gray-

level profile of the edge between the two regions. This figure also shows the first and second 

derivatives of the gray-level profile. The first derivative is positive at the points of transition into and 

out of the ramp as we move from left to right along the profile; it  is constant for points in the ramp; 

and is zero in areas of constant gray level.  The  second derivative is positive at the transition 

associated with the dark side of the edge, negative at the transition associated with the light side of 

the edge, and zero along the ramp and in areas of constant gray level. The signs of the derivatives in 

Fig. 2.2(b) would be reversed for an edge that transitions from light to dark. 

We conclude from these observations that the magnitude of the first derivative can be used to detect 

the presence of an edge at a point in an image (i.e. to determine if a point is on a ramp). Similarly, 

the sign of the second derivative can be used to determine whether an edge pixel lies 

on the dark or light side of an edge. We note two additional properties of the second derivative around 

an edge: A) It produces two values for every edge in an image (an undesirable feature);  and B) an 

imaginary straight line joining the extreme positive and negative values of the second derivative 

would cross zero near the midpoint of the edge. This zero-crossing property of the second derivative 

is quite useful for locating the centers of thick  edges. 

ECE/LIET C402 DIP NOTES Sudheer Asst Prof ECE Dept



 

Fig.2.2 (a) Two regions separated by a vertical edge (b) Detail near the edge, showing a gray-

level profile, and the first and second derivatives of the profile. 
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Edge linking procedures. 
 

The different methods for edge linking are as follows 
 

(i) Local processing 
 

(ii) Global processing via the Hough Transform 
 

(iii) Global processing via graph-theoretic techniques. 
 

 
 

(i) Local Processing: 
 

One of the simplest approaches for linking edge points is to analyze the characteristics of pixels   in 

a small neighborhood (say, 3 X 3 or 5 X 5) about every point (x, y) in an image that has been labeled 

an edge point. All points that are similar according to a set of predefined criteria are  linked, forming 

an edge of pixels that share those criteria. 

The two principal properties used for establishing similarity of edge pixels in  this  kind  of  analysis 

are (1) the strength of the response of the gradient operator used to produce the edge  pixel; and (2) 

the direction of the gradient vector. The first property is given by the value of  Af. 

Thus an edge pixel with coordinates (xo, yo) in a predefined neighborhood of (x, y), is similar in 

magnitude to the pixel at (x, y) if 
 

 

 
 

The direction (angle) of the gradient vector is given by Eq. An edge pixel at (xo, yo) in the predefined 

neighborhood of (x, y) has an angle similar to the pixel at (x, y)  if 
 

 

where A is a nonnegative angle threshold. The direction of the edge at (x, y) is perpendicular to  the 

direction of the gradient vector at that point. 

A point in the predefined neighborhood of (x, y) is linked to the pixel at (x, y) if both magnitude and 

direction criteria are satisfied. This process is repeated at every location in the image. A  record must 

be kept of linked points as the center of the neighborhood is moved from pixel to pixel. A simple 

bookkeeping procedure is to assign a different gray level to each set of linked  edge pixels. 
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(ii) Global processing via the Hough Transform: 
 

In this process, points are linked by determining first if they lie on a curve of specified shape. We 

now consider global relationships between pixels. Given n points in an image, suppose that we want 

to find subsets of these points that lie on straight lines. One possible solution is to first find all lines 

determined by every pair of points and then find all subsets of points that are close to particular lines. 

The problem with this procedure is that it involves finding n(n - 1)/2 ~ n
2 
lines   and then performing 

(n)(n(n - l))/2 ~ n
3 

comparisons of every point to all lines. This approach is computationally 

prohibitive in all but the most trivial applications. 
 

Hough [1962] proposed an alternative approach, commonly referred to as the Hough transform. 

Consider a  point  (xi,  yi)  and  the  general  equation  of  a  straight  line  in  slope-intercept  form, yi  

=  a.xi  +  b.  Infinitely  many  lines  pass  through  (xi,  yi)  but  they  all  satisfy  the  equation   yi = 

a.xi + b for varying values of a and b. However, writing this equation as b = -a.xi + yi, and considering 

the ab-plane (also called parameter space) yields the equation of a single line for a fixed pair (xi, yi). 

Furthermore, a second point (xj, yj) also has a line in  parameter  space  associated with it, and this 

line intersects the line associated with (xi, yi) at (a', b'), where a' is the slope and b' the intercept of 

the line containing both (xi, yi) and (xj, yj) in the xy-plane. In fact, all points contained on this line 

have lines in parameter space that intersect at (a', b'). Figure 3.1 illustrates these concepts. 

 

 

 

Fig.3.1 (a) xy-plane (b) Parameter space 
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Fig.3.2 Subdivision of the parameter plane for use in the Hough  transform 
 

 
 

The computational attractiveness of the Hough transform arises from subdividing the parameter space 

into so-called  accumulator  cells,  as  illustrated  in  Fig.  3.2,  where  (amax  ,  amin)  and  (bmax , bmin), 

are the expected ranges of slope and intercept values. The cell at coordinates (i, j), with accumulator 

value A(i, j), corresponds to the square associated with parameter space coordinates (ai , bi). 

Initially, these cells are set to zero. Then, for every point (xk, yk) in the image plane, we let the 

parameter a equal each of the allowed subdivision values on the fl-axis and solve for the 

corresponding b using the equation b = - xk a + yk .The resulting b’s are then rounded off to the nearest 

allowed value in the b-axis. If a choice of ap results in solution bq, we let A (p, q) = A (p, 

q) + 1. At the end of this procedure, a value of Q in A (i, j) corresponds to Q points in the xy-  plane 

lying on the line y = ai x + bj. The number of subdivisions in the ab-plane determines the accuracy of 

the co linearity of these points. Note that subdividing the a axis into K increments gives, for every 

point (xk, yk), K values of b corresponding to the K possible values of a. With n image points, this 

method involves nK computations. Thus the procedure just discussed is linear   in n, and the product 

nK does not approach the number of computations discussed at the  beginning unless K approaches 

or exceeds n. 
 

A problem with using the equation y = ax + b to represent a line is that the slope 

approaches infinity as the line approaches the vertical. One way around this difficulty is to use    the 

normal representation of a line: 

x cosθ + y sinθ = ρ 
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Figure 3.3(a) illustrates the geometrical interpretation of the parameters used. The use of this 

representation in constructing a table of accumulators is identical to the method discussed for the 

slope-intercept representation. Instead of straight lines, however, the loci are sinusoidal curves in the 

ρθ -plane. As before, Q collinear points lying on a line x cosθj +  y  sinθj  =  ρ,  yield  Q sinusoidal 

curves that intersect at (pi, θj) in the parameter space. Incrementing θ and solving for   the 

corresponding p gives Q entries in accumulator A (i, j) associated with the cell determined by (pi, θj). 

Figure 3.3 (b) illustrates the subdivision of the parameter  space. 

 

 
 

Fig.3.3 (a) Normal representation of a line (b) Subdivision of the ρθ-plane into  cells 
 

 
 

The range of angle θ is ±90°, measured with respect to the x-axis. Thus with reference to Fig. 3.3 (a), 

a horizontal line has θ = 0°, with ρ being equal to the positive x-intercept. Similarly,  a  vertical line 

has θ = 90°, with p being equal to the positive y-intercept, or θ = - 90°, with ρ being equal to the 

negative y-intercept. 

 

 

(iii) Global processing via graph-theoretic  techniques 
 

In this process we have a global approach for edge detection and linking based on representing edge 

segments in the form of a graph and searching the graph for low-cost paths that correspond   to 

significant edges. This representation provides a rugged approach that performs well in the presence 

of noise. 
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Fig.3.4 Edge clement between pixels p and q 
 

 
 

We begin the development with some basic definitions. A graph G = (N,U) is a finite, nonempty set 

of nodes N, together with a set U of unordered pairs of distinct elements of N. Each pair (ni,   nj) of 

U is called an arc. A graph in which the arcs are directed is called a directed graph. If an    arc is 

directed from node ni to node nj, then nj is said to be a successor of the parent node ni. The process of 

identifying the successors of a node is called expansion of the node. In each graph we define levels, 

such that level 0 consists of a single node, called the start or root node, and the  nodes in the last level 

are called goal nodes. A cost c (ni, nj) can be associated with every arc (ni, nj). A sequence of nodes 

n1, n2... nk, with each node ni being a successor of node ni-1 is called a  path from n1 to nk. The cost of 

the entire path is 

 

 
 

 

 

The following discussion is simplified if we define an  edge element as the boundary between    two 

pixels p and q, such that p and q are 4-neighbors, as Fig.3.4 illustrates. Edge elements are identified 

by the xy-coordinates of points p and q. In other words, the edge element in Fig. 3.4 is defined by the 

pairs (xp, yp) (xq, yq). Consistent with the definition an edge is a sequence of connected edge elements. 

We can illustrate how the concepts just discussed apply to edge detection using the   

3 X 3 image shown in Fig. 3.5 (a). The outer numbers are  pixel 
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Fig.3.5 (a) A 3 X 3 image region, (b) Edge segments and their costs, (c) Edge corresponding to 

the lowest-cost path in the graph shown in Fig.  3.6 

 

 

coordinates and the numbers in brackets represent gray-level values. Each edge element, defined by 

pixels p and q, has an associated cost, defined as 
 

 

where H is the highest gray-level value in the image (7 in this case), and f(p) and f(q) are the gray-

level values of p and q, respectively. By convention, the point p is on the right-hand side of the 

direction of travel along edge elements. For example, the edge segment (1, 2) (2, 2)  is  between 

points (1, 2) and (2, 2) in Fig. 3.5 (b). If the direction of travel is to the right, then p is    the point 

with coordinates (2, 2) and q is point with coordinates (1, 2); therefore, c (p, q) = 7 - [7 

- 6] = 6. This cost is shown in the box below the edge segment. If, on the other hand, we are traveling 

to the left between the same two points, then p is point (1, 2) and q is (2, 2). In this case the cost is 8, 

as shown above the edge segment in Fig. 3.5(b). To simplify the discussion, we assume that edges 

start in the top row and terminate in the last row, so that the first element of an edge can be only 

between points (1, 1), (1, 2) or (1, 2), (1, 3). Similarly, the last edge element  has 

to be between points (3, 1), (3, 2) or (3, 2), (3, 3). Keep in mind that p and q are 4-neighbors, as noted 

earlier. Figure 3.6 shows the graph for this problem. Each node (rectangle) in the graph corresponds 

to an edge element from Fig. 3.5. An arc exists between two nodes if the two corresponding edge 

elements taken in succession can be part of an  edge. 
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Fig. 3.6 Graph for the image in Fig.3.5 (a). The lowest-cost path is shown  dashed. 
 

 
 

As in Fig. 3.5 (b), the cost of each edge segment, is shown in a box on the side of the arc leading into 

the corresponding node. Goal nodes are shown shaded. The minimum cost path is shown dashed, and 

the edge corresponding to this path is shown in Fig. 3.5  (c). 
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Thresholding & Global Thresholding  
 

Thresholding: 
 

Because of its intuitive properties and simplicity of implementation, image thresholding enjoys a 

central position in applications of image segmentation. 
 

Global Thresholding: 
 

The simplest of all thresholding techniques is to partition the image histogram by using a single 

global threshold, T. Segmentation is then accomplished by scanning the image pixel by pixel and 

labeling each pixel as object or back-ground, depending on whether the gray level of that pixel is 

greater or less than the value of T. As indicated earlier, the success of this method depends  entirely 

on how well the histogram can be partitioned. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.4.1 FIGURE 10.28 (a) Original image, (b) Image histogram, (c) Result of global 

thresholding with T midway between the maximum and minimum gray levels. 

Figure 4.1(a) shows a simple image, and Fig. 4.1(b) shows its histogram. Figure 4.1(c) shows the 

result of segmenting Fig. 4.1(a) by using a threshold T midway between the maximum and minimum 

gray levels. This threshold achieved a "clean" segmentation by eliminating the shadows and leaving 

only the objects themselves. The objects of interest in this case are darker than the background, so 

any pixel with a gray level ≤ T was labeled black (0), and any pixel with   a gray level ≥ T was labeled 

white (255).The key objective is merely to generate a binary image, so the black-white relationship 

could be reversed. The type of global thresholding just described can be expected to be successful in 

highly controlled environments. One of the areas in which   this often is possible is in industrial 

inspection applications, where control of the illumination usually is feasible. 
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The threshold in the preceding example was specified by using a  heuristic  approach, 

based on visual inspection of the histogram. The following algorithm can be used to obtain T 

automatically: 

1. Select an initial estimate for T. 
 

2. Segment the image using T. This will produce two groups of pixels: G1 consisting of all pixels 

with gray level values >T and G2 consisting of pixels with values <  T. 

3. Compute the average gray level values µ1 and µ2 for the pixels in regions G1 and  G2. 

 

4. Compute a new threshold value: 
 

 

5. Repeat steps 2 through 4 until the difference in T in successive iterations is smaller than a 

predefined parameter To. 

When there is reason to believe that the background and object occupy comparable areas in the 

image, a good initial value for T is the average gray level of the image. When objects are small 

compared to the area occupied by the background (or vice versa), then one group of pixels will 

dominate the histogram and the average gray level is not as good an initial choice. A more appropriate 

initial value for T in cases such as this is a value midway between the maximum and minimum gray 

levels. The parameter To is used to stop the algorithm after changes become small in terms of this 

parameter. This is used when speed of iteration is an important  issue. 

 

 

Basic adaptive thresholding process used in image segmentation. 

 

 

Basic Adaptive Thresholding: 
 

Imaging factors such as uneven illumination can transform a perfectly segmentable histogram  into 

a histogram that cannot be partitioned effectively by a single global threshold. An approach for 

handling such  a situation  is to divide  the original  image into  subimages  and  then utilize   a 

different threshold to segment each subimage. The key issues in this approach are how to subdivide 

the image and how to estimate the threshold for each resulting subimage. Since the threshold used 

for each pixel depends on the location of the pixel in terms of the subimages, this type of thresholding 

is adaptive. 
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Fig.5 (a) Original image, (b) Result of global thresholding. (c) Image subdivided into individual 

subimages (d) Result of adaptive  thresholding. 

 

We illustrate adaptive thresholding with a example. Figure 5(a) shows the image, which we 

concluded could not be thresholded effectively with a single global threshold. In fact, Fig. 5(b) shows 

the result of thresholding the image with a global threshold manually placed in the valley   of its 

histogram. One approach to reduce the effect of nonuniform illumination is to subdivide     the image 

into smaller subimages, such that the illumination of each subimage is approximately uniform. Figure 

5(c) shows such a partition, obtained by subdividing the image into four equal parts, and then 

subdividing each part by four again. All the subimages that did not contain a boundary between object 

and back-ground had variances of less than 75. All  subimages  containing boundaries had variances 

in excess of 100. Each subimage with variance greater than 100 was segmented with a threshold 

computed for that subimage using the algorithm.    The initial 

value for T in each case was selected as the point midway between the minimum and maximum gray 

levels in the subimage. All subimages with variance less than 100 were treated as one composite 

image, which was segmented using a single threshold estimated using the same algorithm. The result 

of segmentation using this procedure is shown in Fig.  5(d). 

With the exception of two subimages, the improvement over Fig. 5(b) is evident. The boundary 

between object and background in each of the improperly segmented subimages was small and dark, 

and the resulting histogram was almost unimodal. 
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Threshold selection based on boundary characteristics. 
 

 

Use of Boundary Characteristics for Histogram Improvement and Local  Thresholding: 
 

It is intuitively evident that the chances of selecting a "good" threshold are  enhanced  considerably 

if the histogram peaks are tall, narrow, symmetric, and separated by deep valleys. One approach for 

improving the shape of histograms is to consider only those pixels that lie on    or near the edges 

between objects and the background. An immediate and obvious improvement   is that histograms 

would be less dependent on the relative sizes of objects and the background.   For instance, the 

histogram of an image composed of a small object on a large background area   (or vice versa) would 

be dominated by a large peak because of the high concentration of one type of pixels. 

If only the pixels on or near the edge between object and the background were used, the 

resulting histogram would have peaks of approximately the same height. In addition, the probability 

that any of those given pixels lies on an object would be approximately equal to the probability that 

it lies on the back-ground, thus improving the symmetry of the histogram  peaks. 

Finally, as indicated in the following paragraph, using pixels that satisfy some simple measures based 

on gradient and Laplacian operators has a tendency to deepen the valley between histogram peaks. 

The principal problem with the approach just discussed is the implicit assumption that the edges 

between objects and background arc known. This information clearly is not available during 

segmentation, as finding a division between objects and background is precisely what segmentation 

is all about. However, an indication of whether a pixel is on an edge may be  obtained by computing 

its gradient. In addition, use of the Laplacian can yield information regarding whether a given pixel 

lies on the dark or light side of an edge. The average value of the Laplacian is 0 at the transition of 

an edge, so in practice the valleys of histograms formed from the pixels selected by a 

gradient/Laplacian criterion can be expected to be sparsely  populated.  This property produces the 

highly desirable deep valleys. 

The gradient Aƒ at any point (x, y) in an image can be found. Similarly, the Laplacian A2
f can    

also be found. These two quantities may be used to form a three-level image, as  follows: 
 

 

where the symbols 0, +, and - represent any three distinct gray levels, T is a threshold, and the 

gradient and Laplacian are computed at every point (x, y). For a dark object on a light background, 

the use of the Eqn. produces an image s(x, y) in which (1) all pixels that are not on an edge (as 

determined by Aƒ being less than T) are labeled 0; (2) all pixels on the dark side of an edge are 

labeled +; and (3) all pixels on the light side of an edge are labeled -. The symbols + and - in Eq. 

above are reversed for a light object on a dark background. Figure 6.1 shows the labeling 

produced by Eq. for an image of a dark, underlined stroke written on a light  background. 
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The information obtained with this procedure can be used to generate a segmented, binary image in 

which l's correspond to objects of interest and 0's correspond to the background. The transition (along 

a horizontal or vertical scan line) from a light background to a dark object must be characterized by 

the occurrence of a - followed by a + in s (x, y). The  interior of the  object is composed of pixels that 

are labeled either 0 or +. Finally, the transition from the object back to the background is characterized 

by the occurrence of a + followed by a -.  Thus  a horizontal or vertical scan line containing a section 

of an object has the following  structure: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.1 Image of a handwritten stroke coded by using Eq. discussed  above 
 

where (…) represents any combination of +, -, and 0. The innermost parentheses contain object points 

and are labeled 1. All other pixels along the same scan line are labeled  0,  with  the exception of any 

other sequence of (- or +) bounded by (-, +) and (+, -). 
 

 

Fig.6.2 (a) Original image, (b) Image segmented by local  thresholding. 
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Figure 6.2 (a) shows an image of an ordinary scenic bank check. Figure 6.3 shows the histogram  as 

a function of gradient values for pixels with gradients greater than 5. Note that this histogram has 

two dominant modes that are symmetric, nearly of the same height, and arc separated by a distinct 

valley. Finally, Fig. 6.2(b) shows the segmented image obtained by with T at or near the midpoint of 

the valley. Note that this example is an illustration of local thresholding, because the value of T was 

determined from a histogram of the gradient and Laplacian, which are local properties. 

 

 
 

 

Fig.6.3 Histogram of pixels with gradients greater than  5 
 

Region based segmentation. 
 

Region-Based Segmentation: 
 

The objective of segmentation is to partition an image into regions. We approached this problem by 

finding boundaries between regions based on discontinuities in gray levels, whereas segmentation 

was accomplished via thresholds based on the distribution of pixel properties, such as gray-level 

values or color. 
 

Basic Formulation: 
 

Let R represent the entire image region. We may view segmentation as a process that partitions     R 

into n subregions, R1, R2..., Rn, such that 

 

 

 

 
 

 

 

 
 

Here, P (Ri) is a logical predicate defined over the points in set Ri and  Ǿ`  is  the  null  set. Condition 

(a) indicates that the segmentation must be complete; that is, every pixel must be in a region. 

Condition (b) requires that points in a region must be connected in some predefined    sense. Condition 

(c) indicates that the regions must be disjoint. Condition (d) deals with the properties that must be 

satisfied by the pixels in a segmented  region—for  example  P  (Ri) = TRUE if all pixels in Ri, have 

the same gray level. Finally, condition (c) indicates that regions Ri and Rj are different in the sense of 

predicate P. 
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Region Growing: 
 

As its name implies, region growing is a procedure that groups pixels or subregions into larger regions 

based on predefined criteria. The basic approach is to start with a set of "seed" points and from these 

grow regions by appending to each seed those neighboring pixels that have properties similar to the 

seed (such as specific ranges of gray level or color). When a priori information is  not available, the 

procedure is to compute at every pixel the same set of properties that ultimately will be used to assign 

pixels to regions during the growing process. If the result of these computations shows clusters of 

values, the pixels whose properties place them near the centroid   of these clusters can be used as 

seeds. 

The selection of similarity criteria depends not only on the problem under consideration, but also on 

the type of image data available. For example, the analysis of land-use satellite imagery depends 

heavily on the use of color. This problem would be significantly more difficult, or even impossible, 

to handle without the inherent information available in color images.  When  the images are 

monochrome, region analysis must be carried out with a set of descriptors based on gray levels and 

spatial properties (such as moments or  texture). 

Basically, growing a region should stop when no more pixels satisfy the criteria for inclusion in that 

region. Criteria such as gray level, texture, and color, are local in nature and do not take into account 

the "history" of region growth. Additional criteria that increase the power of a region- growing 

algorithm utilize the concept of size, likeness between a candidate pixel and the pixels grown so far 

(such as a comparison of the gray level of a candidate and the average gray level of the grown region), 

and the shape of the region being grown. The use of these types of descriptors  is based on the 

assumption that a model of expected results is at least partially  available. 

Figure 7.1 (a) shows an X-ray image of a weld (the horizontal dark region) containing several cracks 

and porosities (the bright, white streaks running horizontally through the middle of the image). We 

wish to use region growing to segment the regions of the weld failures. These segmented features 

could be used for inspection, for inclusion in a database of historical studies, for controlling an 

automated welding system, and for other numerous applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7.1 (a) Image showing defective welds, (b) Seed points, (c) Result of region growing, (d) 

Boundaries of segmented ; defective welds (in  black). 
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The first order of business is to determine the initial seed points. In this application, it is known  that 

pixels of defective welds tend to have the maximum allowable digital value B55 in this    case). Based 

on this information, we selected as starting points all pixels having values of 255.  The points thus 

extracted from the original image are shown in Fig. 10.40(b). Note that many of the points are 

clustered into seed regions. 

The next step is to choose criteria for region growing. In this particular example 

we chose two criteria for a pixel to be annexed to a region: (1) The absolute gray-level difference 

between any pixel and the seed had to be less than 65. This number is based on the histogram shown 

in Fig. 7.2 and represents the difference between 255  and the location of the  first major valley to 

the left, which is representative of the highest gray level value in the dark  weld region. (2) To be 

included in one of the regions, the pixel had to be 8-connected to at least one pixel in that region. 

If a pixel was found to be connected to more than  one region,  the regions 

were merged. Figure 7.1 (c) shows the regions that resulted by starting with the seeds in Fig. 7.2 (b) 

and utilizing the criteria defined in the previous paragraph. Superimposing the boundaries of these 

regions on the original image [Fig. 7.1(d)] reveals that the region-growing procedure did indeed 

segment the defective welds with an acceptable degree of accuracy. It is of interest to note that it was 

not necessary to specify any stopping rules in this case because the criteria for region growing were 

sufficient to isolate the features of  interest. 

 

 
 

Fig.7.2 Histogram of Fig. 7.1 (a) 
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Region Splitting and Merging: 
 

The procedure just discussed grows regions from a set of seed points. An alternative is  to subdivide 

an image initially into a set of arbitrary, disjointed regions and then merge and/or split the regions in 

an attempt to satisfy the conditions. A split and merge algorithm that iteratively works toward 

satisfying these constraints is developed. 

Let R represent the entire image region and select a predicate P. One approach for segmenting R   is 

to subdivide it successively into smaller and smaller quadrant regions so that, for any region    Ri, 

P(Ri) = TRUE. We start with the entire region. If P(R) = FALSE, we divide the image into quadrants. 

If P is FALSE for any quadrant, we subdivide that quadrant into subquadrants, and so on. This 

particular splitting technique has a convenient representation in the form of a so-called quadtree (that 

is, a tree in which nodes have exactly four descendants), as illustrated in Fig. 7.3. Note that the root 

of the tree corresponds to the entire image and that each node corresponds to a subdivision. In this 

case, only R4 was subdivided  further. 
 

Fig. 7.3 (a) Partitioned image (b) Corresponding  quadtree. 
 

If only splitting were used, the final partition likely would contain adjacent regions with identical 

properties. This drawback may be remedied by allowing merging, as well as splitting. Satisfying the 

constraints, requires merging only adjacent regions whose combined pixels satisfy the  predicate P. 

That is, two adjacent regions Rj and Rk are merged only if P (Rj U Rk) =  TRUE. 

The preceding discussion may be summarized by the following procedure, in which, at any step  we 

1. Split into four disjoint quadrants any region Ri, for which P (Ri) =  FALSE. 
 

2. Merge any adjacent regions Rj and Rk for which P (Rj U Rk) =  TRUE. 

 

3. Stop when no further merging or splitting is possible. 
 

Several variations of the preceding basic theme are possible. For example, one possibility is to  

split the image initially into a set of blocks. Further splitting is carried out as  described  

previously, but merging is initially limited to groups of four blocks that are descendants in the 

quadtree representation and that satisfy the predicate P. When no  further  mergings of this type  

are possible, the procedure is terminated by one final merging of regions satisfying step 2. At 

this point, the merged regions may be of different sizes. The principal advantage of this approach 

is that it uses the same quadtree for splitting and merging, until the final merging  step. 
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MORPHOLOGICAL IMAGE PROCESSING: 

PRELIMINARIES: 

Some basic concepts from set theory that are needed as foundation for this unit. 

Some Basic Concepts from Set Theory: 

Let A be a set in Z2. If a= (𝑎1
 , 𝑎2) is an element of A, then we write 

a ϵ A 

Similarly, if  “a” is not an element of A, we write 

a ∉ A 

The set with no elements is called the null or empty set  and is denoted by the symbol Ø. A 

set is specified by the contents of two braces {.}.  The elements of the sets with which we are 

concerned in this unit as the coordinates of pixels representing objects or other features of 

interest in an image. Foe example, when we write an expression of the form C= { w/w = -d, 

for d ϵ D} we meant that set C is the set of elements, w, such that w is formed by multiplying 

each of the two coordinates of all the elements of set D by -1. 

If every element of a set A is also an element of another set B, the A is said to be a subset of 

B, denoted as 

A ⊆ B 

The union of two sets A and B, denoted by 

C = A U B 

Is the set of all elements belonging to either A, B, or both. Similarly, the intersection of two 

sets A and B are denoted by 

D = A ∩ B 

Is the set of all elements belonging to both A and B. 

Two sets A and B are said to be disjoint or mutually exclusive if they have no common 

elements. In this case 

A ∩ B = Ø 
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The Principal logic operation used in image processing are AND, OR and NOT 

(COMPLEMENT). Their properties are summarized in Table.1. These operations are 

functionally complete in the sense that they can be combined to form any other logic 

operation. 

Table.1 : The three basic operations 

P Q P AND Q P OR Q NOT (P) 

0 0 0 0 1 

0 1 0 1 1 

1 0 0 1 0 

1 1 1 1 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1: Some logic operations between binary images 

Logic operations are performed on a pixel by pixel basis between corresponding pixels of two 

or more images (except NOT, which operates on the pixels of a single image). Because the 

ECE/LIET C402 DIP NOTES Sudheer Asst Prof ECE Dept



AND operation of two binary variables is 1 only when both variables are 1, the result at any 

location in a resulting AND image is 1 only if the corresponding pixels in the two input 

images are 1. Fig.1 shows various examples of logic operations involving images, where 

black indicates a binary 1 and white indicates 0. 

DILATION: 

With A and B are sets in Z2, the dilation of A by B, denoted A ⊕ B, is defined as 

A ⊕ B = {z / (�̂�)
𝑧
∩ A ≠ Ø} 

This equation is based on obtaining the reflection of B about its origin and shifting 

this reflection by z. The dilation of A by B then is the set of all displacements, z, such that �̂� 

and A overlap by at least one element. Set B is commonly referred to as the structuring 

element in dilation, as well as in other morphological operations. 

The dilation is based on set operations, whereas convolution is based on arithmetic 

operations, the basic process of flipping B about its origin and then successively displacing it 

so that it slides over set (image) A is analogous to the convolution process. 

                                                            

    

Fig. 4: Dilation A by B shown shaded   Fig. 5: Elongaed structuring element 

Fig.2: Set A  Fig.3: Square structuring element ( a dot in the center) 
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The Fig.2 shows a simple set, and Fig. 3 shows a structuring element and its reflection ( the 

dark dot denotes the origin of the element). In this case the structuring element and its 

reflection are equal because B is symmetric with respect to its origin. The dashed line in Fig.4 

shows the original set for reference and the solid line shows the limit beyond which any 

further displacements of the origin of �̂� by z would cause the intersection of �̂� and A to be 

empty. Therefore, all points inside this boundary constitute the dilation of A by B. The Fig. 5 

shows a structuring element designed to achieve more dilation vertically than horizontal. 

Fig.6 shows the dilation achieved with this element. 

EROSION: 

For sets A and B in Z2 the erosion of A by B, denoted A Ө B, is defined as 

A Ө B = {z / (𝐵)𝑧 ⊆ A} 

In words, this equation indicates that the erosion of A by B is the set of all points z such that 

B, translated by z, is contained in A. As in the case of dilation, the above equation is not the 

only definition of erosion. However, this equation usually is favored in practical 

implementations of morphology. 

                                                       

       

Fig. 6: Dilation of A using this element. 

 

Fig.7: Set A                                                 Fig.8:Square structuring element 
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Fig. 9: Erosion of A by B,shown shaded         Fig. 10: elongated structuring element 

 

Fig. 11: Erosion of A using this element 

The Fig.7-11 shows the process similar to that shown in dilation. As before, set A is shown as 

a dashed line for reference in Fig.9. The boundary of the shaded region shows the limit 

beyond which further displacement of the origin of B would cause this set to cease being 

completely contained in A. Thus, the locus of points within this boundary (i.e., the shaded 

region) constitutes the erosion of A by B, Fig. 10 shows an elongated structuring element and 

Fig. 11shows the erosion of A by this element. Here, the original set was eroded down the 

line. One of the simplest uses of erosion is for eliminating irrelevant detail ( in terms of size) 

from a binary image). 

OPENING AND CLOSING: 

Opening generally smoothes the contour of an object, breaks narrow isthmuses, and 

eliminates thin protrusions. Closing also tends to smooth sections of contours but, as opposed 

to opening, it generally fuses narrow breaks and long thin gulfs, eliminates small holes, and 

fills gaps in the contour. 

The opening of set A by structuring element B, denoted A ͦ B, is defined as 

A ͦ B = (A Ө B ) ⊕ B 
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Thus, the opening A by B is the erosion of A by B, followed by a dilation of the result of B. 

Similarly, the closing of set A by structuring element B, denoted A• B, is defined as 

A• B = ( A⊕ B ) Ө B 

Which, in words, says that the closing of A by B is simply the dilation of A by B, followed 

by the erosion of the result by B. 

The opening operation has a simple geometric interpretation (Fig. 12). Suppose that we view 

the structuring element B as a (flat) “rolling ball.” The boundary of A ͦ B is then 

established by the points in B that reach the farthest into the boundary of A as B 

is rolled around the inside of this boundary. This geometric fitting property of 

the opening of A by B is obtained by taking the union of all translates of B that 

fit into A. That is, opening can be expressed as fitting process such that 

A ͦ B = U {(𝐵)𝑧/(𝐵)𝑧 ⊆ A} 

 

Fig.12: (a) Structuring element B “rolling” along the inner boundary of A (the dot 

indicates the origin of B). (c) The heavy line is the outer boundary of the opening (d) 

Complete opening (Shaded) 

 

Fig. 13: (a) Structuring element B “rolling” on the outer boundary of set A. (b) Heavy 
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line is the outer boundary of the closing. (c) Complete closing. 

 Where U {.} denotes the union of all the sets inside the braces. 

Closing has a similar geometric interpretation, except that now we roll B on the outside of the 

boundary (Fig. 13). It will be shown shortly that opening and closing are duals of each other, 

so having to roll the ball on the outside is not unexpected. Geometrically, a point w is an 

element of A• B if and only if (𝐵)𝑧 ∩ A ≠ Ø for any translate of (𝐵)𝑧 that contains w. Fig.13 

illustrates the basic geometrical properties of closing. 

THE HIT-OR-MISS TRANSFORMATION: 

The morphological hit-or-miss transform is a basic tool for shape detection. The Fig.14 

shows a set A consisting of three shapes (subsets), denoted X, Y, Z. The shading in Figs.14 

(a) through (c) indicates the original sets, where as the shading in Figs.14(d) and (e) indicates 

the result of morphological operations. The objective is to find the location of one of the 

shapes, say, X. 

Let the origin of each shape be located at its center of gravity. Let X be enclosed by a small 

window,W. The Local background of X with respect to W is defined as the set difference 

(W– X), as shown in Fig.14(b). Fig. 14(c) shows the complement of A, which is needed later. 

Fig.14(d) shows the erosion of A by X . Fig.14 (e) shows the erosion of the complement of A 

by the local background set (W- X). the outer shaded region in the Fig.14(e) is part of the 

erosion. The Figs.14(d) and (e) that the set of locations for which X exactly fits inside A is 

the intersection of the erosion of A by X and the erosion of 𝐴𝑐 by (W- X) as shown in Fig. 

14(f). This intersection is precisely the location sought. In other words, if B denotes the set 

composed of X and its background, the match ( o set of matches) of B in A. 

 

(a)           (b) 
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(c )       (d) 

     

(e )        (f) 

Fig. 14: (a) Set A (b) A window ,W, and local background of X, with respect to W,      

(W - X). (c)Complement of A. (d) Erosion of A by X. (e) Erosion of Ac by (W –X).          

(f) Intersection of (d) and (e), showing the location of the origin of X, as desired. 

SOME BASIC MORPHOLOGICAL ALGORITHMS: 

1. Boundary Extraction: 

The boundary of a set A, denoted by 𝛽(𝐴), can be obtained by first eroding A by B and then 

performing the set difference between A and its erosion. 

𝛽(𝐴) =  A – (A Ө B) 

 Where B is a suitable element. 

Fig. 15.illustrates the mechanics of boundary extraction. It shows a simple binary object, a 

structuring element B, and the result of using above equation. Although the structuring 

element shown in Fig. 15(b) is among the most frequently used, it is by no means unique.  
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(a)         (b) 

 

                           

(c )       (d) 

Fig. 15: (a) Set A. (b) Structuring element B. (c) A eroded by B. (d) Boundary, given by 

the set difference between A and its erosion. 

 2.Region Filtering: 

 The region filling is a simple alogorithm whichis based on set dilations,complementation, 

and intersections. In Fig. 16 A denotes a set containing a subset whose elements are 8-

connected boundary points of a region. Beginning with a point p inside the boundary, the 

objective is to fill the entire region with 1’s. 

If all nonboundary( background) points are labeled as 0, then the value of 1 to p are used to 

begin. The following procedure then fills the region with 1’s 

𝑋𝑘 = (𝑋𝑘−1⊕ B) ∩ Ac          
k=1,2,3,……. 

Where 𝑋0 = p, and B is the symmetric structuring element shown in Fig. 16 (c). the algorithm 

terminates at iteration step k if 𝑋𝑘 = 𝑋𝑘−1. The set union of 𝑋𝑘 and A contains the filled set 

and its boundary. 
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(a)          (b)        (c) 

                            

(d )        (e)     (f) 

                                

(g )          (h)      (i) 

Fig. 16: Region Filling. (a) Set A (b) Complement of A (c) Structuring element B (d) 

Initial point inside the boundary. (e)-(h) various steps. 

 

 

Gray Scale Morphology: 
 

 

In gray scale images on the contrary to binary images we deal with digital image functions 

of the form f(x,y) as an input image and b(x,y) as a structuring element. (x,y) are integers 

from Z*Z that represent a coordinates in the image. f(x,y) and b(x,y) are functions that assign 

gray level value to each distinct pair of coordinates. For example the domain of gray values 

can be 0-255, whereas 0 – is black, 255- is white. 
 

Dilation – Gray-Scale 

 

Equation for gray-scale dilation is: 
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Df and Db are domains of f and b. 

• The condition that (s-x),(t-y) need to be in the domain of f and x,y in the domain of 

b, is analogous to the condition in the binary definition of dilation, where the two 

sets need to overlap by at least one element. 

We will illustrate the previous equation in terms of 

1-D. and we will receive an equation for 1 variable: 

 

The requirements the (s-x) is in the domain of f and x is in the domain of b imply that f 

and b overlap by at least one element. Unlike the binary case, f, rather than the structuring 

element b is shifted. Conceptually f sliding by b is really not different than b sliding by f. 

The general effects of performing dilation on a gray scale image is 

Twofold: 

  

1. If all the values of the structuring elements are positive than the output 

image tends to be brighter than the input. 

 

2. Dark details either are reduced or eliminated, depending on how their 

values and shape relate to the structuring element used for dilation 
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Dilation – Gray-Scale example 
 

Erosion – Gray-Scale 

 

• Gray-scale erosion is defined as: 

 

 

 

• The condition that (s+x),(t+y) have to be in the domain of f, and x,y have to be in the 

domain of b, is completely analogous to the condition in the binary definition of erosion, 

where the structuring element has to be completely combined by the set being eroded. 

• The same as in erosion we illustrate with 1-D function 
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Erosion– Gray-Scale example 1 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

• General effect of performing an erosion in grayscale images: 

1. If all elements of the structuring element are positive, the output image tends to 

be darker than the input image. 

 

2. The effect of bright details in the input image that are smaller in area than the 

structuring element is reduced, with the degree of reduction being determined by 

the grayscale values surrounding by the bright detail and by shape and amplitude 

values of the structuring element itself. 

• Similar to binary image grayscale erosion and dilation are duals with respect to function 

complementation and reflection. 
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Dilation & Erosion– Gray-Scale 

 
 
 

Over Applying the Filter Filter Demonstration 

 
 

Opening And Closing 
 
 

• Similar to the binary algorithms 

• Opening –  

 

• Closing – 

• In the opening of a gray-scale image, we remove small 

light details, while relatively undisturbed overall gray levels and larger bright features 

• In the closing of a gray-scale image, we remove small dark details, while relatively 

undisturbed overall gray levels and larger dark features 

Opening a G-S picture is describable as pushing object B under the scan- line graph, while 

traversing the graph according the curvature of  B 

ECE/LIET C402 DIP NOTES Sudheer Asst Prof ECE Dept



 

 
 
 
 
 
 
 
 
 
 
 

 

Closing a G-S picture is describable as pushing object B on top of the scan-line graph, while 

traversing the graph according the curvature of B 

 

 

 

 

 

 

 

 

 

 

 

 

The peaks are usually remains in their original form 
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UNIT- VI 

COLOR IMAGE PROCESSING 

 Color fundamentals. 
 

Color of an object is determined by the nature of the light reflected from it. When a beam 

of sunlight passes through a glass prism, the emerging beam of light is not white but consists 

instead of a continuous spectrum of colors ranging from violet at one end to red at the other. As 

Fig.  shows, the color spectrum may be divided into six broad regions: violet, blue, green, yellow, 

orange, and red. When viewed in full color (Fig. ), no color in the spectrum ends abruptly, but 

rather each color blends smoothly into the  next. 
 

Fig.  Color spectrum seen by passing white light through a  prism. 
 

 

 

Fig.  Wavelengths comprising the visible range of the electromagnetic  spectrum. 
 

As illustrated in Fig. , visible light is composed of a relatively narrow band of frequencies 

in the electromagnetic spectrum. A body that reflects light that is balanced in all visible 

wavelengths appears white to the observer. However, a body that favors reflectance in a limited 

range of the visible spectrum exhibits some shades of color. For example, green objects reflect 

light with wavelengths primarily in the 500 to 570 nm range while absorbing most of the energy 

at other wavelengths. 

Characterization of light is central to the science of color. If the light is achromatic (void  

of color), its only attribute is its intensity, or amount. Achromatic light is what viewers see on a 

black and white television set. 

 

Three basic quantities are used to describe the quality of a chromatic light source:  

radiance, luminance, and brightness. 
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Radiance: 
 

Radiance is the total amount of energy that flows from the light source, and it is usually 

measured in watts (W). 

Luminance: 
 

Luminance, measured in lumens (lm), gives a measure of the amount of energy  an 

observer perceives from a light source. For example, light emitted from a source operating in the 

far infrared region of the spectrum could have significant energy (radiance), but  an observer  

would hardly perceive it; its luminance would be almost zero. 

Brightness: 
 

Brightness is a subjective descriptor that is practically impossible to measure. It embodies 

the achromatic notion of intensity and is one of the key factors in describing color  sensation. 
 

Fig.  Absorption of light by the red, green, and blue cones in the human eye as a function of 

wavelength. 

Cones are the sensors in the eye responsible for color vision. Detailed experimental 

evidence has established that the 6 to 7 million cones in the human eye can be divided into three 

principal sensing categories, corresponding roughly to red, green, and blue. Approximately    

65%of all cones are sensitive to red light, 33% are sensitive to green light, and only about 2% 

are sensitive to blue (but the blue cones are the most sensitive). Figure 5.1.3 shows average 

experimental curves detailing the absorption of light by the red, green, and blue cones in the eye. 

Due to these absorption characteristics of the human eye, colors arc seen  as  variable  

combinations of the so- called primary colors red (R), green (G), and blue  (B). 

The primary colors can be added to produce the secondary colors of light --magenta (red 

plus blue), cyan (green plus blue), and yellow (red plus green). Mixing the three primaries, or a 
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secondary with its opposite primary color, in the right intensities produces white  light. 

The characteristics generally used to distinguish one color from another are brightness,  

hue, and saturation. Brightness embodies the chromatic notion of intensity. Hue is an attribute 

associated with the dominant wavelength in a mixture of light waves. Hue represents dominant 

color as perceived by an observer. Saturation refers to the relative purity or the amount of white 

light mixed with a hue. The pure spectrum colors are  fully saturated. Colors  such  as  pink  (red 

and white) and lavender (violet and white) are less saturated, with the degree of saturation being 

inversely proportional to the amount of white  light-added. 

Hue and saturation taken together are called chromaticity, and. therefore, a color may be 

characterized by its brightness and chromaticity. 

Color models. 
 

The purpose of a color model (also called color space or color system) is to facilitate the 

specification of colors in some standard, generally accepted way. In essence, a color model is a 

specification of a coordinate system and a subspace within that system where each color is 

represented by a single point. 

The RGB Color Model: 
 

In the RGB model, each color appears in its primary spectral components of red, green,  

and blue. This model is based on a Cartesian coordinate system. The color subspace of interest 

is the cube shown in Fig. 5.2, in which RGB values are at three corners; cyan, magenta, and 

yellow are at three other corners; black is at the origin; and white is at the corner farthest from 

the    origin. In this model, the gray scale (points of equal RGB values) extends from black to 

white along the line joining these two points. The different colors in this model arc points on or 

inside the cube, and are defined by vectors extending from the origin.  

 

For convenience, the assumption   is that all color values have been normalized so that 

the cube shown in Fig. 5.2 is the unit cube. That is, all values of R, G. and B are assumed to be 

in the range [0,  1]. 

 
 

 

Fig. 5.2 Schematic of the RGB color cube. 
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Images represented in the RGB color model consist of three component images, one for 

each primary color. When fed into an RGB monitor, these three images combine on the phosphor 

screen to produce a composite color image. The number of bits used to represent each pixel in 

RGB space is called the pixel depth. 

Consider an RGB image in which each of the red, green, and blue images is an 8-bit 

image. Under these conditions each RGB color pixel [that is, a triplet of values (R, G, B)] is said 

to have a depth of 24 bits C image planes times the number of bits per plane). The term full-color 

image is used often to denote a 24-bit RGB color image. The total number of colors in a 24-bit 

RGB image is (2
8
)
3 
= 16,777,216. 

RGB is ideal for image color generation (as in image capture by a color camera or image 

display in a monitor screen), but its use for color description is much more limited. 

CMY color model. 
 

Cyan, magenta, and yellow are the secondary colors of light or, alternatively, the primary 

colors of pigments. For example, when a surface coated with cyan pigment is illuminated with 

white light, no red light is reflected from the surface. That is, cyan subtracts red light from 

reflected white light, which itself is composed of equal amounts of red, green, and blue  light. 

Most devices that deposit colored pigments on paper, such as color printers and copiers, 

require CMY data input or perform an RGB to CMY conversion internally. This conversion is 

performed using  the simple operation  (1)  where, again, the assumption is  that all  color    values 

have been normalized to the range [0, 1]. Equation (1) demonstrates that light reflected from 

a surface coated with pure cyan does not contain red (that is, C = 1 — R in the equation). 

         (1) 

Similarly, pure magenta does not reflect green, and pure yellow does not reflect blue. 

Equation (1) also reveals that RGB values can be obtained easily from a set of CMY values by 

subtracting the individual CMY values from 1. As indicated earlier, in image processing this 

color model is used in connection with generating hardcopy output, so the inverse operation from 

CMY to RGB generally is of little practical interest. 

Equal amounts of the pigment primaries, cyan, magenta, and yellow should produce 

black. In practice, combining these colors for printing produces a muddy-looking black. 

HSI color model. 
 

When humans view a color object, we describe it by its hue, saturation, and brightness.  

Hue is a color attribute that describes a pure color (pure yellow, orange, or red), whereas 

saturation gives a measure of the degree to which a pure color is diluted by white light.  

Brightness is a subjective descriptor that is practically impossible to measure. It embodies the 

achromatic notion of intensity and is one of the key factors in describing color sensat ion. 
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Intensity (gray level) is a most useful descriptor of monochromatic images. This quantity 

definitely is measurable and easily interpretable. The HSI (hue, saturation, intensity) color 

model, decouples the intensity component from the color-carrying information (hue and 

saturation) in a color image. As a result, the HSI model is an ideal tool for developing image 

processing algorithms based on color descriptions that are natural and intuitive to humans . 

In Fig 5.4 the primary colors are separated by 120°. The secondary colors are 60° from    

the primaries, which means that the angle between secondaries is also 120°. Figure 5.4(b) shows 

the same hexagonal shape and an arbitrary color point (shown as a dot).The hue of the point is 

determined by an angle from some reference point. Usually (but not always) an angle of 0° from 

the red axis designates 0 hue, and the hue increases counterclockwise from there. The saturation 

(distance from the vertical axis) is the length of the vector from the origin to the point. Note that 

the origin is defined by the intersection of the color plane with the vertical intensity axis. The 

important components of the HSI color space are the vertical intensity axis, the length of the  

vector to a color point, and the angle this vector makes with the red  axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.4 Hue and saturation in the HSI color model. 
 

procedure for conversion from RGB color model to HSI color  model. 
 

Given an image in RGB color format, the H component of each RGB pixel is 

obtained using the equation 

                                       
(1) 
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With 
 

             (2) 

The saturation component is given by 
 

                                 (3) 

Finally, the intensity component is given by 

 

 

(4) 
 

It is assumed that the RGB values have been normalized to the range [0, 1] and that 

angle θ is measured with respect to the red axis of the HST space. Hue can be normalized to 

the range [0, 1] by dividing by 360° all values resulting from Eq. (1). The other two HSI 

components already are in this range if the given RGB values are in the interval [0,  1]. 

procedure for conversion from HSI color model to RGB color  model. 
 

Given values of HSI in the interval [0,1 ], one can find the corresponding RGB values 

in the same range. The applicable equations depend on the values of H. There are three sectors 

of interest, corresponding to the 120° intervals in the separation of primaries.\ 

RG sector (0
o 
≤ H <120°): 

When H is in this sector, the RGB components are given by the  equations 
 

B = I (1 – S) 
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GB sector (120

o 
≤ H < 240

o
): 

G = 3 I – (R + B) 
 

R = I [1 + (S * cos H/ cos(60
o 
– H)] 

 

If the given value of H is in this sector, first subtract 120° from  it. 
 

H = H - 120
0
 

 

Then the RGB components are 
 

R = I (1 – S) 

B = 3 I – (R + G) 
 

G = I [1 + (S * cos H/ cos(60
o 
– H)] 

 

BR sector (240
o 
≤ H ≤ 360

o
):  

If H is in this range, subtract 240
o 
from it 

H = H - 240
0
 

Then the RGB components are 
 

G = I (1 – S) 

 

R = 3 I – (B + G) 
 

B = I [1 + (S * cos H/ cos(60
o 
– H)] 
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Pseudocolor Image Processing. 
 

Pseudocolor (also called false color) image processing consists of assigning colors to    

gray values based on a specified criterion. The term pseudo or false color is used to differentiate 

the process of assigning colors to monochrome images from the processes associated with true 

color images. The process of gray level to color transformations is known as pseudocolor image 

processing. 

The two techniques used for pseudocolor image processing are, 
 

(i) Intensity Slicing 
 

(ii) Gray Level to Color Transformation 
 

(i) Intensity Slicing: 
 

The technique of intensity (sometimes called density) slicing and color coding is one of   

the simplest examples of pseudocolor image processing. If an image is interpreted as a 3-D 

function (intensity versus spatial coordinates), the method can be viewed  as  one  of  placing 

planes parallel to the coordinate plane of the image; each plane then "slices" the function in the 

area of intersection. Figure 5.8 shows an example of using a plane at f(x, y) = li to slice the image 

function into two levels. 

If a different color is assigned to each side of the plane shown  in  Fig. 5.8,  any  pixel 

whose gray level is above the plane will be coded with one color, and any pixel below the plane 

will be coded with the other. Levels that lie on the plane itself may be arbitrarily assigned one of 

the two colors. The result is a two-color image whose relative appearance can be controlled by 

moving the slicing plane up and down the gray-level axis. 

In general, the technique may be summarized as follows. Let [0, L - 1 ] represent the gray 

scale, let level lo represent black [f(x, y) = 0], and level lL - 1 represent white [f(x, y) = L - 1 ]. 

Suppose that P planes perpendicular to the intensity axis are defined at levels l1, l2,….,lp.. Then, 

assuming that 0 < P < L – 1, the P planes partition the gray scale into P + 1 intervals, V1, V2,..., 

Vp + 1. Gray-level to color assignments are made according to the relation 
 

f(x, y) = ck if f(x, y) є   Vk 

where ck is the color associated with the kth intensity interval  Vk defined  by  the partitioning 

planes at l = k - 1 and l = k. 
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Fig 5.8.1 Geometric interpretation of the intensity-slicing  technique. 
 

The idea of planes is useful primarily for a geometric interpretation of the intensity-   

slicing technique. Figure 5.8.2 shows an alternative representation that  defines  the  same  

mapping as in Fig. 5.8.1. According to the mapping function shown in Fig. 5.8.2, any input gray 

level is assigned one of two colors, depending on whether it is above or below the value of li  

When more levels are used, the mapping function takes on a staircase  form. 
 

Fig 5.8.2 An alternative representation of the intensity-slicing  

technique. 
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(ii) Gray Level to Color Transformation: 
 

The idea underlying this approach is to perform three independent transformations on the 

gray level of any input pixel. The three results are then fed separately into the red, green, and    

blue channels of a color television monitor. This method produces a composite image whose   

color content is modulated by the nature of the transformation functions. Note that these are 

transformations on the gray-level values of an image and are not functions of  position. 

In intensity slicing, piecewise linear functions of the gray levels are used to generate 

colors. On the other hand, this method can be based on smooth, nonlinear functions, which, as 

might be expected, gives the technique considerable flexibility. 
 

 

Fig. 5.8.3 Functional block diagram for pseudocolor image  processing. 
 

The output of each transformation is a composite image. 
 

 
 

Basics of full color image processing. 
 

Full-color image processing approaches fall into two major categories. In the first  

category, each component image is processed individually and then form a composite processed 

color image from the individually processed components. In the second category, one works with 

color pixels directly. Because full-color images have at least  three  components, color pixels  

really  are vectors. For example, in the RGB system, each color point can be interpreted  as a  

vector extending from the origin to that point in the RGB coordinate  system. 

Let c represent an arbitrary vector in RGB color space: 
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(1) 
 

This equation indicates that the components of c are simply the RGB components of a color 

image at a point. If the color components are a function of coordinates (x, y) by using the notation 

     (2) 

For an image of size M X N, there are MN such vectors, c(x, y), for x = 0,1, 2,...,M- l; y = 

0,1,2,...,N- 1. 

It is important to keep clearly in mind that Eq. (2) depicts a vector whose components are spatial 

variables in x and y. 

In order for per-color-component and vector-based processing to be equivalent, two 

conditions have to be satisfied: First, the process has to be applicable to both vectors and scalars. 

Second, the operation on each component of a vector must be independent of the other components. 
 

Fig 9 Spatial masks for gray-scale and RGB color images. 
 

Fig 9 shows neighborhood spatial processing of gray-scale and  full-color  images.  Suppose  

that  the  process  is  neighborhood  averaging.  In  Fig.  9(a),  averaging  would  be Accomplished 

by summing the gray levels of all the pixels in the neighborhood and dividing by   the total number 

of pixels in the neighborhood. In Fig. 9(b), averaging would be done by summing all the vectors in 

the neighborhood and dividing each component by the total number    of vectors in the neighborhood. 

But each component of the average vector is the sum of the    pixels in the image corresponding to 

that component, which is the same as the result that would   be obtained if the averaging were done 

on a per-color-component basis and then the vector was formed. 
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Color Transformations 

 

 It is useful to think of a color image as a vector valued image, where each pixel has associated 

with it, as vector of three values. 

 

 Each components of this vector corresponds to a different aspect of color, depending on the 

color model being used. For example, in an RGB model, the three values in the vector 

respectively denote the red, green, and blue components of the color of that pixel. In an HSI 

model, the three values in the vector denote the hue, saturation, and intensity of the color of 

that pixel. 

 

 We can think of color transformations as a transformation of vectors. 

 

si   Ti (r1, r2 , r3 ), i  1,2,3. 

 Here (r1, r2 , r3 ) represent  the  color  components  of  the  input image 

f(m,n),  whereas (s1, s2 , s3 ) represent  the  color  components  of   the 

output image g(m,n). 

 

 In theory, any color transformation can be performed in any color space model. However, 

in practice, some transformations are better suited to specific models. 

 

 Moreover, the cost of conversion between the models must be a factor in implementation of 

a particular transformation. 

 

Example: Modifying intensity 

 Consider a simple transformation involving intensity scaling: 

 

g (m, n)  kf (m, n) 

 

where 0 < k < 1 is a scaling factor. 

 In HSI  space, this can be implemented as 

 

s1    r1, s2   r2 , and s3   kr3 

 

 In RGB  space, this can be implemented as 

 

s1    kr1, s2    kr2 , and s3    kr3 

 

 In CMY  space, this can be implemented as 

 

s1   kr1   1  k, s2   kr2   1  k, and s3   kr  1  k3 
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 Although the fewest operations are involved in the HSI space, the computations involved in 

conversion back and forth from RGB space more than offsets any savings in computation 

in HSI space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Color Complement 

 

 Hues opposite one another in a color circle are called complements. 

 

 

 This is analogous to gray-scale negatives. 

 

 As in the grayscale case, this transformation is useful in enhancing details embedded in dark 

portions of a color image. 

 

 Complementation can be easily implemented in the RGB space. However, there is no simple 

equivalent of this in the HIS space. An approximation is possible. 
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Example 

 

 

 

 

 

 Color slicing is similar to intensity slicing ---  
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Smoothing of Color Images 

 

 Just like the case of grayscale images, smoothing of color images can be performed to 

remove abrupt transitions of gray values. 

 

 This can be done either in the RGB domain or the HSI domain. 

 

 In  the RGB  domain, all the three color components are   individually 

transformed by an appropriate smoothing mask, say a 

 

 

 

 

 

3 3 mask: 

 

 

 

 

 

 In the HSI domain, only the I component is transformed by means of  a spatial smoothing 

mask, leaving the H and S components unchanged. 

 

 In general, the final result in the two cases would be different.  Because the average of two 

colors is a color intermediate between the two, the former approach has the potential of 

introducing colors not present in the original image. The latter approach does not have this 

problem, since the Hue and Saturation components are preserved. 
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Example 
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Color Image Sharpening 

 

 Sharpening of color images can be performed in a manner analogous to smoothing, using 

appropriate masks, say the Laplacian mask 

 

 

 

 

 

 

 

 

 

 

 

Example 
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color segmentation process. 
 

Segmentation is a process that partitions an image into regions and partitioning an image 

into regions based on color is known as color segmentation. 
 

Segmentation in HSI Color Space: 
 

If anybody want to segment an image based on color, and in addition, to carry out the 

process on individual planes, it is natural to think first of the HSI space because color is 

conveniently represented in the hue image. Typically, saturation is used as a masking image in 

order to isolate further regions of interest in the hue image. The intensity image is used less 

frequently for segmentation of color images because it carries no color  information. 

Segmentation in RGB Vector Space: 
 

Although, working in HSI space is more intuitive, segmentation is one area in which   

better results generally are obtained by using RGB color vectors. The  approach  is  

straightforward. Suppose that the objective is to segment objects of a specified color range in an 

RGB image. Given a set of sample color points representative of the colors of interest, we obtain 

an estimate of the "average" color that we wish to segment. Let this average color be denoted by 

the RGB vector a. The objective of segmentation is to classify each RGB pixel in a given image  

as having a color in the specified range or not. In order to perform this  comparison,  it  is 

necessary to have a measure of similarity. One of the simplest measures is the  Euclidean  

distance. Let z denote an arbitrary point in RGB space. z is similar to a if the distance between 

them is less than a specified threshold, Do. The Euclidean distance between z and a is given  by 
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where the subscripts R, G, and B, denote the RGB components of vectors a and z .The locus 

of points such that D(z, a) ≤ Do is a solid sphere of radius Do. 
 

Points contained within or on the surface of the sphere satisfy the specified color criterion; 

points outside the sphere do not. Coding these two sets of points in the image with, say, black 

and   white, produces a binary segmented image. 

A useful generalization of previous equation is a distance measure of the form 
 

D (z, a) = [(z-a) 
T 

C
-1 

(z-a)] 
1/2

 

Where C is the covariance matrix1 of the samples representative of the color to be 

segmented. The above equation represents an ellipse with color points such that D(z, a ) ≤  

Do. 

Noise in color images 

 The previously discussed noise models are applicable to color images as well. 

 

 Typically, noise affects all the three color components. 

 

 Usually, across the three color channels, the noise is independent and its statistical 

characteristic are identical. 

 

 However, due to different illumination conditions or selective malfunction of camera 

hardware in a particular channel, this may not be the case. 

 

 Noise filtering by means of a simple averaging can be accomplished by performing the 

operation independently on the R, G, and B channels and combining the results. 

 

 However, more complicated filters like the median filter are not as straight-forward to 

formulate in the color domain and will not be pursued here. 
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Color Image Compression: 

 

Image compression is an application of data compression that encodes the original image 

with few bits. The objective of image compression is to reduce the redundancy of the 

image and to store or transmit data in an efficient form. Fig 1.1 shows the block diagram 

of the general image storage system. The main goal of such system is to reduce the storage 

quantity as much as possible, and the decoded image displayed in the monitor can be 

similar to the original image as much as can be. The essence of each block will be 

introduced in the following sections 

 

Fig.  General Image Storage System 

Color Specification 

The Y, Cb, and Cr components of one color image are defined in YUV color coordinate, 

where Y is commonly called the luminance and Cb, Cr are commonly called the 

chrominance. The meaning of luminance and chrominance is described as follows 

◆ Luminance: received brightness of the light, which is proportional to the total 

energy in the visible band. 

◆ Chrominance: describe the perceived color tone of a light, which depends on  the 

wavelength composition of light chrominance is in turn characterized by  two 

attributes – hue and saturation. 

1. hue: Specify the color tone, which depends on the peak wavelength of the light 

2. saturation: Describe how pure the color is, which depends on the spread or 

bandwidth of the light spectrum 

The RGB primary commonly used for color display mixes the luminance and 

chrominance attributes of a light. In many applications, it is desirable to describe a color in 

terms of its luminance and chrominance content separately, to enable more efficient 

processing and transmission of color signals. Towards this goal, various three-component 

color coordinates have been developed, in which one component reflects the luminance and 

the other two collectively characterize hue and   saturation. 

One such coordinate is the YUV color space. The [Y Cb Cr]
T  

values  in the    YUV 

Coordinate are related to the [R G B]
T 

values in the RGB coordinate by 
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Similarly, if we would like to transform the YUV coordinate back to RGB coordinate, 

the inverse matrix can be calculated from (1.1), and the inverse transform is taken to obtain 

the corresponding RGB components. 

Spatial Sampling of Color Component 
 

 

 

 

 

 

Fig.  The three different chrominance down sampling format 

Because the eyes of human are more sensitive to the luminance than the chrominance, the 

sampling rate of chrominance components is half that of the luminance component. This 

will result in good performance in image compression with almost no loss of 

characteristics in visual perception of the new up sampled image. There are three color 

formats in the baseline system: 

◆ 4:4:4 format: The sampling rate of the luminance component is the   same 

as those of the chrominance. 

◆ 4:2:2 format: There are 2 Cb samples and 2 Cr samples for every 4 Y samples.  

This leads to half number of pixels in each line, but the same number of lines per frame. 

◆ 4:2:0 format: Sample the Cb and Cr components by half in both the horizontal and 

vertical directions.  In this format, there are also 1 Cb sample and 1 Cr sample for every 4 

Y samples. 

At the decoder, the down sampled chrominance components of 4:2:2 and 4:2:0 formats 

should be up sampled back to 4:4:4 format.  
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